ecosmak.ru

Уровень гравитации на земле. Что такое гравитация простыми словами

Оби-Ван Кеноби сказал, что сила скрепляет галактику. То же самое можно сказать и о гравитации. Факт – гравитация позволяет нам ходить по Земле, Земле вращаться вокруг Солнца, а Солнцу двигаться вокруг сверхмассивной черной дыры в центре нашей галактики. Как понять гравитацию? Об этом - в нашей статье.

Сразу скажем, что вы не найдете здесь однозначно верного ответа на вопрос «Что такое гравитация». Потому что его просто нет! Гравитация – одно из самых таинственных явлений, над которым ученые ломают голову и до сих пор полностью не могут объяснить его природу.

Есть множество гипотез и мнений. Насчитывается более десятка теорий гравитации, альтернативных и классических. Мы рассмотрим самые интересные, актуальные и современные.

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм .

Гравитация – физическое фундаментальное взаимодействие

Всего в физике 4 фундаментальных взаимодействия. Благодаря им мир является именно таким, какой он есть. Гравитация – одно из этих взаимодействий.

Фундаментальные взаимодействия:

  • гравитация;
  • электромагнетизм;
  • сильное взаимодействие;
  • слабое взаимодействие.
Гравитация – самое слабое из четырех фундаментальных взаимодействий.

На текущий момент действующей теорией, описывающей гравитацию, является ОТО (общая теория относительности). Она была предложена Альбертом Эйнштейном в 1915-1916 годах.

Однако мы знаем, что об истине в последней инстанции говорить рано. Ведь несколько веков до появления ОТО в физике для описания гравитации главенствовала Ньютоновская теория, которая была существенно расширена.

В рамках ОТО на данный момент нельзя объяснить и описать все вопросы, связанные с гравитацией.

До Ньютона было широко распространено мнение, что гравитация на земле и небесная гравитация – разные вещи. Считалось, что планеты движутся по своим, отличным от земных, идеальным законам.

Ньютон открыл закон всемирного тяготения в 1667 году. Конечно, этот закон существовал еще при динозаврах и намного раньше.

Античные философы задумывались над существованием силы тяготения. Галилей экспериментально рассчитал ускорение свободного падения на Земле, открыв, что оно одинаково для тел любой массы. Кеплер изучал законы движения небесных тел.

Ньютону удалось сформулировать и обобщить результаты наблюдений. Вот что у него получилось:

Два тела притягиваются друг к другу с силой, называемой гравитационной силой или силой тяготения.

Формула силы притяжения между телами:

G – гравитационная постоянная, m – массы тел, r – расстояние между центрами масс тел.

Каков физический смысл гравитационной постоянной? Она равна силе, с которой действуют друг на друга тела с массами в 1 килограмм каждое, находясь на расстоянии в 1 метр друг от друга.


По теории Ньютона, каждый объект создает гравитационное поле. Точность закона Ньютона была проверена на расстояниях менее одного сантиметра. Конечно, для малых масс эти силы незначительны, и ими можно пренебречь.

Формула Ньютона применима как для расчету силы притяжения планет к солнцу, так и для маленьких объектов. Мы просто не замечаем, с какой силой притягиваются, скажем, шары на бильярдном столе. Тем не менее эта сила есть и ее можно рассчитать.

Сила притяжения действует между любыми телами во Вселенной. Ее действие распространяется на любые расстояния.

Закон всемирного тяготения Ньютона не объясняет природы силы притяжения, но устанавливает количественные закономерности. Теория Ньютона не противоречит ОТО. Ее вполне достаточно для решения практических задач в масштабах Земли и для расчета движения небесных тел.

Гравитация в ОТО

Несмотря на то, что теория Ньютона вполне применима на практике, она имеет ряд недостатков. Закон всемирного тяготения является математическим описанием, но не дает представления о фундаментальной физической природе вещей.

Согласно Ньютону, сила притяжения действует на любых расстояниях. Причем действует мгновенно. Учитывая, что самая большая скорость в мире – скорость света, выходит несоответствие. Как гравитация может мгновенно действовать на любые расстояниях, когда для их преодоления свету нужно не мгновение, а несколько секунд или даже лет?

В рамках ОТО гравитация рассматривается не как сила, которая действует на тела, но как искривление пространства и времени под действием массы. Таким образом гравитация – не силовое взаимодействие.


Каково действие гравитации? Попробуем описать его с использованием аналогии.

Представим пространство в виде упругого листа. Если положить на него легкий теннисный мячик, поверхность останется ровной. Но если рядом с мячиком положить тяжелую гирю, она продавит на поверхности ямку, и мячик начнет скатываться к большой и тяжелой гире. Это и есть «гравитация».

Кстати! Для наших читателей сейчас действует скидка 10% на

Открытие гравитационных волн

Гравитационные волны были предсказаны Альбертом Эйнштейном еще в 1916 году, но открыли их только через сто лет, в 2015.

Что такое гравитационные волны? Снова проведем аналогию. Если бросить камень в спокойную воду, от места его падения по поверхности воды пойдут круги. Гравитационные волны – такая же рябь, возмущение. Только не на воде, а в мировом пространстве-времени.

Вместо воды – пространство-время, а вместо камня, скажем, черная дыра. Любое ускоренное передвижение массы порождает гравитационную волну. Если тела находятся в состоянии свободного падения, при прохождении гравитационной волны расстояние между ними изменится.


Так как гравитация – очень слабое взаимодействие, обнаружение гравитационных волн было связано с большими техническими трудностями. Современные технологии позволили обнаружить всплеск гравитационных волн только от сверхмассивных источников.

Подходящее событие для регистрации гравитационной волны - слияние черных дыр. К сожалению или к счастью, это происходит достаточно редко. Тем не менее ученым удалось зарегистрировать волну, которая буквально раскатилась по пространству Вселенной.

Для регистрации гравитационных волн был построен детектор диаметром 4 километра. При прохождении волны регистрировались колебания зеркал на подвесах в вакууме и интерференция света, отраженного от них.

Гравитационные волны подтвердили справедливость ОТО.

Гравитация и элементарные частицы

В стандартной модели за каждое взаимодействие отвечают определенные элементарные частицы. Можно сказать, что частицы являются переносчиками взаимодействий.

За гравитацию отвечает гравитон – гипотетическая безмассовая частица, обладающая энергией. Кстати, в нашем отдельном материале читайте подробнее о наделавшем много шума бозоне Хиггса и других элементарных частицах.

Напоследок приведем несколько любопытных фактов о гравитации.

10 фактов о гравитации

  1. Чтобы преодолеть силу гравитации Земли, тело должно иметь скорость, равную 7,91 км/с. Это первая космическая скорость. Ее достаточно, чтобы тело (например, космический зонд) двигалось по орбите вокруг планеты.
  2. Чтобы вырваться из гравитационного поля Земли, космический корабль должен иметь скорость не менее 11,2 км/с. Это вторая космическая скорость.
  3. Объекты с наиболее сильной гравитацией – черные дыры. Их гравитация настолько велика, что они притягивают даже свет (фотоны).
  4. Ни в одном уравнении квантовой механики вы не найдете силы гравитации. Дело в том, что при попытке включения гравитации в уравнения, они теряют свою актуальность. Это одна из самых важных проблем современной физики.
  5. Слово гравитация происходит от латинского “gravis”, что означает “тяжелый”.
  6. Чем массивнее объект, тем сильнее гравитация. Если человек, который на Земле весит 60 килограмм, взвесится на Юпитере, весы покажут 142 килограмма.
  7. Ученые NASA пытаются разработать гравитационный луч, который позволит перемещать предметы бесконтактно, преодолевая силу притяжения.
  8. Астронавты на орбите также испытывают гравитацию. Точнее, микрогравитацию. Они как бы бесконечно падают вместе с кораблем, в котором находятся.
  9. Гравитация всегда притягивает и никогда не отталкивает.
  10. Черная дыра, размером с теннисный мяч, притягивает объекты с той же силой, что и наша планета.

Теперь вы знаете определение гравитации и можете сказать, по какой формуле рассчитывается сила притяжения. Если гранит науки придавливает вас к земле сильнее, чем гравитация, обращайтесь в наш студенческий сервис . Мы поможем учиться легко при самых больших нагрузках!

На вопрос «Что такое сила?» физика отвечает так: «Сила есть мера взаимодействия вещественных тел между собой или между телами и другими материальными объектами - физическими полями». Все силы в природе могут быть отнесены к четырем фундаментальным видам взаимодействий: сильному, слабому, электромагнитному и гравитационному. Наша статья рассказывает о том, что представляют собой гравитационные силы - мера последнего и, пожалуй, наиболее широко распространенного в природе вида этих взаимодействий.

Начнем с притяжения земли

Всем живущим известно, что существует сила, которая притягивает объекты к земле. Она обычно именуется гравитацией, силой тяжести или земным притяжением. Благодаря ее наличию у человека возникли понятия «верх» и «низ», определяющие направление движения или расположения чего-либо относительно земной поверхности. Так в частном случае, на поверхности земли или вблизи нее, проявляют себя гравитационные силы, которые притягивают объекты, обладающие массой, друг к другу, проявляя свое действие на любых как самых малых, так и очень больших, даже по космическим меркам, расстояниях.

Сила тяжести и третий закон Ньютона

Как известно, любая сила, если она рассматривается как мера взаимодействия физических тел, всегда приложена к какому-нибудь из них. Так и в гравитационном взаимодействии тел друг с другом, каждое из них испытывает такие виды гравитационных сил, которые вызваны влиянием каждого из них. Если тел всего два (предполагается, что действием всех других можно пренебречь), то каждое из них по третьему закону Ньютона будет притягивать другое тело с одинаковой силой. Так Луна и Земля притягивают друг друга, следствием чего являются приливы и отливы земных морей.

Каждая планета в Солнечной системе испытывает сразу несколько сил притяжения со стороны Солнца и других планет. Конечно, определяет форму и размеры ее орбиты именно сила притяжения Солнца, но и влияние остальных небесных тел астрономы учитывают в своих расчетах траекторий их движения.

Что быстрее упадет на землю с высоты?

Главной особенностью этой силы является то, что все объекты падают на землю с одной скоростью, независимо от их массы. Когда-то, вплоть до 16-го ст., считалось, что все наоборот - более тяжелые тела должны падать быстрее, чем легкие. Чтобы развеять это заблуждение Галилео Галилею пришлось выполнить свой знаменитый опыт по одновременному сбрасыванию двух пушечных ядер разного веса с наклонной Пизанской башни. Вопреки ожиданиям свидетелей эксперимента оба ядра достигли поверхности одновременно. Сегодня каждый школьник знает, что это произошло благодаря тому, что сила тяжести сообщает любому телу одно и то же ускорение свободного падения g = 9,81 м/с 2 независимо от массы m этого тела, а величина ее по второму закону Ньютона равна F = mg.

Гравитационные силы на Луне и на других планетах имеют разные значения этого ускорения. Однако характер действия силы тяжести на них такой же.

Сила тяжести и вес тела

Если первая сила приложена непосредственно к самому телу, то вторая к его опоре или подвесу. В этой ситуации на тела со стороны опор и подвесов всегда действуют силы упругости. Гравитационные силы, приложенные к тем же телам, действуют им навстречу.

Представьте себе груз, подвешенный над землей на пружине. К нему приложены две силы: сила упругости растянутой пружины и сила тяжести. Согласно третьему закону Ньютона груз действует на пружину с силой, равной и противоположной силе упругости. Эта сила и будет его весом. У груза массой 1 кг вес равен Р = 1 кг ∙ 9,81 м/с 2 = 9,81 Н (ньютон).

Гравитационные силы: определение

Первая количественная теория гравитации, основанная на наблюдениях движения планет, была сформулирована Исааком Ньютоном в 1687 году в его знаменитых "Началах натуральной философии". Он писал, что силы притяжения, которые действуют на Солнце и планеты, зависят от количества вещества, которое они содержат. Онираспространяются на большие расстояния и всегда уменьшаются как величины, обратные квадрату расстояния. Как же можно вычислить эти гравитационные силы? Формула для силы F между двумя объектами с массами m 1 и m 2 , находящимися на расстоянии r, такова:

  • F=Gm 1 m 2 /r 2 ,
    где G — константа пропорциональности, гравитационная постоянная.

Физический механизм гравитации

Ньютон был не полностью удовлетворен своей теорией, поскольку она предполагала взаимодействие между притягивающимися телами на расстоянии. Сам великий англичанин был уверен, что должен существовать некий физический агент, ответственный за передачу действия одного тела на другое, о чем он вполне ясно высказался в одном из своих писем. Но время, когда было введено понятие гравитационного поля, которое пронизывает все пространство, наступило лишь через четыре столетия. Сегодня, говоря о гравитации, мы можем говорить о взаимодействии любого (космического) тела с гравитационным полем других тел, мерой которого и служат возникающие между каждой парой тел гравитационные силы. Закон всемирного тяготения, сформулированный Ньютоном в вышеприведенной форме, остается верным и подтверждается множеством фактов.

Теория гравитации и астрономия

Она была очень успешно применена к решению задач небесной механики во время XVIII и начале XIX века. К примеру, математики Д. Адамс и У. Леверье, анализируя нарушения орбиты Урана, предположили, что на него действуют гравитационные силы взаимодействия с еще неизвестной планетой. Ими было указано ее предполагаемое положение, и вскоре астрономом И. Галле там был обнаружен Нептун.

Хотя оставалась одна проблема. Леверье в 1845 году рассчитал, что орбита Меркурия прецессирует на 35"" за столетие, в отличие от нулевого значения этой прецессии, получаемого по теории Ньютона. Последующие измерения дали более точное значение 43"". (Наблюдаемая прецессия равна действительно 570""/век, но кропотливый расчет, позволяющий вычесть влияние от всех других планет, дает значение 43"".)

Только в 1915 г. Альберт Эйнштейн смог объяснить это несоответствие в рамках созданной им теории гравитации. Оказалось, что массивное Солнце, как и любое другое массивное тело, искривляет пространство-время в своей окрестности. Эти эффекты вызывают отклонения в орбитах планет, но у Меркурия, как самой малой и ближайшей к нашей звезде планете, они проявляются сильнее всего.

Инерционная и гравитационная массы

Как уже отмечалось выше, Галилей был первым, кто наблюдал, что объекты падают на землю с одинаковой скоростью, независимо от их массы. В формулах Ньютона понятие массы происходит от двух разных уравнений. Второй его закон говорит, что сила F, приложенная к телу с массой m, дает ускорение по уравнению F = ma.

Однако сила тяжести F, приложенная к телу, удовлетворяет формуле F = mg, где g зависит от другого тела, взаимодействующего с рассматриваемым (земли обычно, когда мы говорим о силе тяжести). В обоих уравнений m есть коэффициент пропорциональности, но в первом случае это инерционная масса, а во втором - гравитационная, и нет никакой очевидной причины, что они должны быть одинаковыми для любого физического объекта.

Однако все эксперименты показывают, что это действительно так.

Теория гравитации Эйнштейна

Он взял факт равенства инерционной и гравитационной масс как отправную точку для своей теории. Ему удалось построить уравнения гравитационного поля, знаменитые уравнения Эйнштейна, и с их помощью вычислить правильное значение для прецессии орбиты Меркурия. Они также дают измеренное значение отклонения световых лучей, которые проходят вблизи Солнца, и нет никаких сомнений в том, что из них следуют правильные результаты для макроскопической гравитации. Теория гравитации Эйнштейна, или общая теория относительности (ОТО), как он сам ее назвал, является одним из величайших триумфов современной науки.

Гравитационные силы - это ускорение?

Если вы не можете отличить инерционную массу от гравитационной, то вы не можете отличить и гравитацию от ускорения. Эксперимент в гравитационном поле вместо этого может быть выполнен в ускоренно движущемся лифте в отсутствии гравитации. Когда космонавт в ракете ускоряется, удаляясь от земли, он испытывает силу тяжести, которая в несколько раз больше земной, причем подавляющая ее часть приходит от ускорения.

Если никто не может отличить гравитацию от ускорения, то первую всегда можно воспроизвести путем ускорения. Система, в которой ускорение заменяет силу тяжести, называется инерциальной. Поэтому Луну на околоземной орбите также можно рассматривать как инерциальную систему. Однако эта система будет отличаться от точки к точке, поскольку изменяется гравитационное поле. (В примере с Луной гравитационное поле изменяет направление из одной точки в другую.) Принцип, согласно которому всегда можно найти инерциальную систему в любой точке пространства и времени, в которой физика подчиняется законам в отсутствии гравитации, называется принципом эквивалентности.

Гравитация как проявление геометрических свойств пространства-времени

Тот факт, что гравитационные силы можно рассматривать как ускорения в инерциальных системах координат, которые отличаются от точки к точке, означает, что гравитация - это геометрическое понятие.

Мы говорим, что пространство-время искривляется. Рассмотрим мяч на плоской поверхности. Он будет покоиться или, если нет никакого трения, равномерно двигаться при отсутствии действия каких-либо сил на него. Если поверхность искривляется, мяч ускорится и будет двигаться до самой низкой точки, выбирая кратчайший путь. Аналогичным образом теория Эйнштейна утверждает, что четырехмерное пространство-время искривлено, и тело движется в этом искривленном пространстве по геодезической линии, которой соответствует кратчайший путь. Поэтому гравитационное поле и действующие в нем на физические тела гравитационные силы - это геометрические величины, зависящие от свойств пространства-времени, которые наиболее сильно изменяются вблизи массивных тел.

Человечество издревле задумывалось о том, как устроен окружающий мир. Почему растет трава, почему светит Солнце, почему мы не можем летать… Последнее, кстати, всегда особенно интересовало людей. Сейчас мы знаем, что причина всему - гравитация. Что это такое, и почему данное явление настолько важно в масштабах Вселенной, мы сегодня и рассмотрим.

Вводная часть

Ученые выяснили, что все массивные тела испытывают взаимное притяжение друг к другу. Впоследствии оказалось, что эта таинственная сила обуславливает и движение небесных тел по их постоянным орбитам. Саму же теорию гравитации сформулировал гениальный чьи гипотезы предопределили развитие физики на много веков вперед. Развил и продолжил (хотя и в совершенно другом направлении) это учение Альберт Эйнштейн - один из величайших умов минувшего века.

На протяжении столетий ученые наблюдали за притяжением, пытались понять и измерить его. Наконец, в последние несколько десятилетий поставлено на службу человечеству (в определенном смысле, конечно же) даже такое явление, как гравитация. Что это такое, каково определение рассматриваемого термина в современной науке?

Научное определение

Если изучить труды древних мыслителей, то можно выяснить, что латинское слово «gravitas» означает «тяжесть», «притяжение». Сегодня ученые так называют универсальное и постоянное взаимодействие между материальными телами. Если эта сила сравнительно слабая и действует только на объекты, которые движутся значительно медленнее то к ним применима теория Ньютона. Если же дело обстоит наоборот, следует пользоваться эйнштейновскими выводами.

Сразу оговоримся: в настоящее время сама природа гравитации до конца не изучена в принципе. Что это такое, мы все еще полностью не представляем.

Теории Ньютона и Эйнштейна

Согласно классическому учению Исаака Ньютона, все тела притягиваются друг к другу с силой, прямо пропорциональной их массе, обратно пропорциональной квадрату того расстояния, которое пролегает между ними. Эйнштейн же утверждал, что тяготение между объектами проявляется в случае искривления пространства и времени (а кривизна пространства возможна только в том случае, если в нем имеется материя).

Мысль эта была очень глубокой, но современные исследования доказывают ее некоторую неточность. Сегодня считается, что гравитация в космосе искривляет только лишь пространство: время можно затормозить и даже остановить, но реальность изменения формы временной материи теоретически не подтверждена. А потому классическое уравнение Эйнштейна не предусматривает даже шанса на то, что пространство будет продолжать влиять на материю и на возникающее магнитное поле.

В большей степени известен закон гравитации (всемирного тяготения), математическое выражение которого принадлежит как раз-таки Ньютону:

\[ F = γ \frac[-1.2]{m_1 m_2}{r^2} \]

Под γ понимается гравитационная постоянная (иногда используется символ G), значение которой равно 6,67545×10−11 м³/(кг·с²).

Взаимодействие между элементарными частицами

Невероятная сложность окружающего нас пространства во многом связана с бесконечным множеством элементарных частиц. Между ними также существуют различные взаимодействия на тех уровнях, о которых мы можем только догадываться. Впрочем, все виды взаимодействия элементарных частиц между собой значительно различаются по своей силе.

Самые мощные из всех известных нам сил связывают между собой компоненты атомного ядра. Чтобы разъединить их, нужно потратить поистине колоссальное количество энергии. Что же касается электронов, то они «привязаны» к ядру только лишь обыкновенным Чтобы его прекратить, порой достаточно той энергии, которая появляется в результате самой обычной химической реакции. Гравитация (что это такое, вы уже знаете) в варианте атомов и субатомных частиц является наиболее легкой разновидностью взаимодействия.

Гравитационное поле в этом случае настолько слабо, что его трудно себе представить. Как ни странно, но за движением небесных тел, чью массу порой невозможно себе вообразить, «следят» именно они. Все это возможно благодаря двум особенностям тяготения, которые особенно ярко проявляются в случае больших физических тел:

  • В отличие от атомных более ощутимо на удалении от объекта. Так, гравитация Земли удерживает в своем поле даже Луну, а аналогичная сила Юпитера с легкостью поддерживает орбиты сразу нескольких спутников, масса каждого из которых вполне сопоставима с земной!
  • Кроме того, оно всегда обеспечивает притяжение между объектами, причем с расстоянием эта сила ослабевает с небольшой скоростью.

Формирование более-менее стройной теории гравитации произошло сравнительно недавно, и именно по результатам многовековых наблюдений за движением планет и прочими небесными телами. Задача существенно облегчалась тем, что все они движутся в вакууме, где просто нет других вероятных взаимодействий. Галилей и Кеплер - два выдающихся астронома того времени, своими ценнейшими наблюдениями помогли подготовить почву для новых открытий.

Но только великий Исаак Ньютон смог создать первую теорию гравитации и выразить ее в математическом отображении. Это был первый закон гравитации, математическое отображение которого представлено выше.

Выводы Ньютона и некоторых его предшественников

В отличие от прочих физических явлений, которые существуют в окружающем нас мире, гравитация проявляется всегда и везде. Нужно понимать, что термин «нулевая гравитация», который нередко встречается в околонаучных кругах, крайне некорректен: даже невесомость в космосе не означает, что на человека или космический корабль не действует притяжение какого-то массивного объекта.

Кроме того, все материальные тела обладают некой массой, выражающейся в виде силы, которая к ним была приложена, и ускорения, полученного за счет этого воздействия.

Таким образом, силы гравитации пропорциональны массе объектов. В числовом отношении их можно выразить, получив произведение масс обоих рассматриваемых тел. Данная сила строго подчиняется обратной зависимости от квадрата расстояния между объектами. Все прочие взаимодействия совершенно иначе зависят от расстояний между двумя телами.

Масса как краеугольный камень теории

Масса объектов стала особым спорным пунктом, вокруг которого выстроена вся современная теория гравитации и относительности Эйнштейна. Если вы помните Второй то наверняка знаете о том, что масса является обязательной характеристикой любого физического материального тела. Она показывает, как будет вести себя объект в случае применения к нему силы вне зависимости от ее происхождения.

Так как все тела (согласно Ньютону) при воздействии на них внешней силы ускоряются, именно масса определяет, насколько большим будет это ускорение. Рассмотрим более понятный пример. Представьте себе самокат и автобус: если прикладывать к ним совершенно одинаковую силу, то они достигнут разной скорости за неодинаковое время. Все это объясняет именно теория гравитации.

Каково взаимоотношение массы и притяжения?

Если говорить о тяготении, то масса в этом явлении играет роль совершенно противоположную той, которую она играет в отношении силы и ускорения объекта. Именно она является первоисточником самого притяжения. Если вы возьмете два тела и посмотрите, с какой силой они притягивают третий объект, который расположен на равных расстояниях от первых двух, то отношение всех сил будет равно отношению масс первых двух объектов. Таким образом, сила притяжения прямо пропорциональна массе тела.

Если рассмотреть Третий закон Ньютона, то можно убедиться, что он говорит точно о том же. Сила гравитации, которая действует на два тела, расположенных на равном расстоянии от источника притяжения, прямо зависит от массы данных объектов. В повседневной жизни мы говорим о силе, с которой тело притягивается к поверхности планеты, как о его весе.

Подведем некоторые итоги. Итак, масса тесно связана и ускорением. В то же время именно она определяет ту силу, с которой будет действовать на тело притяжение.

Особенности ускорения тел в гравитационном поле

Эта удивительная двойственность является причиной того, что в одинаковом гравитационном поле ускорение совершенно различных объектов будет равным. Предположим, что у нас есть два тела. Присвоим одному из них массу z, а другому - Z. Оба объекта сброшены на землю, куда свободно падают.

Как определяется отношение сил притяжения? Его показывает простейшая математическая формула - z/Z. Вот только ускорение, получаемое ими в результате действия силы притяжения, будет абсолютно одинаковым. Проще говоря, ускорение, которое тело имеет в гравитационном поле, никак не зависит от его свойств.

От чего зависит ускорение в описанном случае?

Оно зависит только (!) от массы объектов, которые и создают это поле, а также от их пространственного положения. Двойственная роль массы и равное ускорение различных тел в гравитационном поле открыты уже относительно давно. Эти явления получили следующее название: «Принцип эквивалентности». Указанный термин еще раз подчеркивает, что ускорение и инерция зачастую эквивалентны (в известной мере, конечно же).

О важности величины G

Из школьного курса физики мы помним, что ускорение свободного падения на поверхности нашей планеты (гравитация Земли) равно 10 м/сек.² (9,8 разумеется, но для простоты расчетов используется это значение). Таким образом, если не принимать в расчет сопротивление воздуха (на существенной высоте при небольшом расстоянии падения), то получится эффект, когда тело приобретает приращение ускорения в 10 м/сек. ежесекундно. Так, книга, которая упала со второго этажа дома, к концу своего полета будет двигаться со скоростью 30-40 м/сек. Проще говоря, 10 м/с - это «скорость» гравитации в пределах Земли.

Ускорение свободного падения в физической литературе обозначается буквой «g». Так как форма Земли в известной степени больше напоминает мандарин, чем шар, значение этой величины далеко не во всех ее областях оказывается одинаковым. Так, у полюсов ускорение выше, а на вершинах высоких гор оно становится меньше.

Даже в добывающей промышленности не последнюю роль играет именно гравитация. Физика этого явления порой позволяет сэкономить много времени. Так, геологи особенно заинтересованы в идеально точном определении g, поскольку это позволяет с исключительной точностью производить разведку и нахождение залежей полезных ископаемых. Кстати, а как выглядит формула гравитации, в которой рассмотренная нами величина играет не последнюю роль? Вот она:

Обратите внимание! В этом случае формула гравитации подразумевает под G «гравитационную постоянную», значение которой мы уже приводили выше.

В свое время Ньютон сформулировал вышеизложенные принципы. Он прекрасно понимал и единство, и всеобщность но все аспекты этого явления он описать не мог. Эта честь выпала на долю Альберта Эйнштейна, который смог объяснить также принцип эквивалентности. Именно ему человечество обязано современным пониманием самой природы пространственно-временного континуума.

Теория относительности, работы Альберта Эйнштейна

Во времена Исаака Ньютона считалось, что точки отсчета можно представить в виде каких-то жестких «стержней», при помощи которых устанавливается положение тела в пространственной системе координат. Одновременно предполагалось, что все наблюдатели, которые отмечают эти координаты, будут находиться в едином временном пространстве. В те годы это положение считалось настолько очевидным, что не делалось никаких попыток его оспорить или дополнить. И это понятно, ведь в пределах нашей планеты никаких отклонений в данном правиле нет.

Эйнштейн доказал, что точность измерения окажется действительно значимой, если гипотетические часы движутся значительно медленнее скорости света. Проще говоря, если один наблюдатель, движущийся медленнее скорости света, будет следить за двумя событиями, то они произойдут для него единовременно. Соответственно, для второго наблюдателя? скорость которого такая же или больше, события могут происходить в различное время.

Но как сила гравитации связана с теорией относительности? Раскроем этот вопрос подробно.

Связь между теорией относительности и гравитационными силами

В последние годы сделано огромное количество открытий в области субатомных частиц. Крепнет убеждение, что мы вот-вот найдем окончательную частицу, дальше которой наш мир дробиться не может. Тем настойчивее становится потребность узнать, как именно влияют на мельчайшие «кирпичики» нашего мироздания те фундаментальные силы, которые были открыты еще в прошлом веке, а то и раньше. Особенно обидно, что сама природа гравитации до сих пор не объяснена.

Именно поэтому после Эйнштейна, который установил «недееспособность» классической механики Ньютона в рассматриваемой области, исследователи сосредоточились на полном переосмыслении полученных ранее данных. Во многом пересмотру подверглась и сама гравитация. Что это такое на уровне субатомных частиц? Имеет ли она хоть какое-то значение в этом удивительном многомерном мире?

Простое решение?

Сперва многие предполагали, что несоответствие тяготения Ньютона и теории относительности можно объяснить довольно просто, проведя аналогии из области электродинамики. Можно бы было предположить, что гравитационное поле распространяется наподобие магнитного, после чего его можно объявить «посредником» при взаимодействиях небесных тел, объяснив многие несоответствия старой и новой теории. Дело в том, что тогда бы относительные скорости распространения рассматриваемых сил оказались значительно ниже световой. Так как связаны гравитация и время?

В принципе, у самого Эйнштейна почти получилось построить релятивистскую теорию на основе именно таких взглядов, вот только одно обстоятельство помешало его намерению. Никто из ученых того времени не располагал вообще никакими сведениями, которые бы могли бы помочь определить «скорость» гравитации. Зато имелось немало информации, связанной с перемещениями больших масс. Как известно, они как раз-таки являлись общепризнанным источником возникновения мощных гравитационных полей.

Большие скорости сильно влияют на массы тел, и это ничуть не похоже на взаимодействие скорости и заряда. Чем скорость выше, тем больше масса тела. Проблема в том, что последнее значение автоматически бы стало бесконечным в случае движения со скоростью света или выше. А потому Эйнштейн заключил, что существует не гравитационное, а тензорное поле, для описания которого следует использовать намного больше переменных.

Его последователи пришли к выводу, что гравитация и время практически не связаны. Дело в том, что само это тензорное поле может действовать на пространство, но на время повлиять не в состоянии. Впрочем, у гениального физика современности Стивена Хокинга есть другая точка зрения. Но это уже совсем другая история...

Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы и , разделёнными расстоянием , пропорциональна обеим массам и обратно пропорциональна квадрату расстояния - то есть:

Здесь - гравитационная постоянная , равная примерно 6,6725×10 −11 м³/(кг·с²).

Закон всемирного тяготения - одно из приложений закона обратных квадратов , встречающегося также и при изучении излучений (см., например, Давление света), и являющегося прямым следствием квадратичного увеличения площади сферы при увеличении радиуса, что приводит к квадратичному же уменьшению вклада любой единичной площади в площадь всей сферы.

Гравитационное поле, так же как и поле силы тяжести , потенциально . Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность гравитационного поля влечёт за собой закон сохранения суммы кинетической и потенциальной энергии и при изучении движения тел в гравитационном поле часто существенно упрощает решение. В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим . Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени.

Большие космические объекты - планеты, звезды и галактики имеют огромную массу и, следовательно, создают значительные гравитационные поля.

Гравитация - слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях, и все массы положительны, это, тем не менее, очень важная сила во Вселенной. В частности, электромагнитное взаимодействие между телами на космических масштабах мало, поскольку полный электрический заряд этих тел равен нулю (вещество в целом электрически нейтрально).

Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствовало бы гравитационное взаимодействие.

Из-за глобального характера гравитация ответственна и за такие крупномасштабные эффекты, как структура галактик, черные дыры и расширение Вселенной, и за элементарные астрономические явления - орбиты планет, и за простое притяжение к поверхности Земли и падения тел.

Гравитация была первым взаимодействием, описанным математической теорией. Аристотель считал, что объекты с разной массой падают с разной скоростью. Только много позже Галилео Галилей экспериментально определил, что это не так - если сопротивление воздуха устраняется, все тела ускоряются одинаково. Закон всеобщего тяготения Исаака Ньютона (1687) хорошо описывал общее поведение гравитации. В 1915 году Альберт Эйнштейн создал Общую теорию относительности , более точно описывающую гравитацию в терминах геометрии пространства-времени.

Небесная механика и некоторые её задачи

Наиболее простой задачей небесной механики является гравитационное взаимодействие двух точечных или сферических тел в пустом пространстве. Эта задача в рамках классической механики решается аналитически в замкнутой форме; результат её решения часто формулируют в виде трёх законов Кеплера .

При увеличении количества взаимодействующих тел задача резко усложняется. Так, уже знаменитая задача трёх тел (то есть движение трёх тел с ненулевыми массами) не может быть решена аналитически в общем виде. При численном же решении достаточно быстро наступает неустойчивость решений относительно начальных условий. В применении к Солнечной системе эта неустойчивость не позволяет предсказать точно движение планет на масштабах, превышающих сотню миллионов лет.

В некоторых частных случаях удаётся найти приближённое решение. Наиболее важным является случай, когда масса одного тела существенно больше массы других тел (примеры: Солнечная система и динамика колец Сатурна). В этом случае в первом приближении можно считать, что лёгкие тела не взаимодействуют друг с другом и движутся по кеплеровым траекториям вокруг массивного тела. Взаимодействия же между ними можно учитывать в рамках теории возмущений и усреднять по времени. При этом могут возникать нетривиальные явления, такие как резонансы , аттракторы , хаотичность и т. д. Наглядный пример таких явлений - сложная структура колец Сатурна.

Несмотря на попытки точно описать поведение системы из большого числа притягивающихся тел примерно одинаковой массы, сделать этого не удаётся из-за явления динамического хаоса .

Сильные гравитационные поля

В сильных гравитационных полях, а также при движении в гравитационном поле с релятивистскими скоростями, начинают проявляться эффекты общей теории относительности (ОТО):

  • изменение геометрии пространства-времени;
    • как следствие, отклонение закона тяготения от ньютоновского;
    • и в экстремальных случаях - возникновение чёрных дыр ;
  • запаздывание потенциалов, связанное с конечной скоростью распространения гравитационных возмущений ;
    • как следствие, появление гравитационных волн;
  • эффекты нелинейности: гравитация имеет свойство взаимодействовать сама с собой, поэтому принцип суперпозиции в сильных полях уже не выполняется.

Гравитационное излучение

Одним из важных предсказаний ОТО является гравитационное излучение , наличие которого до сих пор не подтверждено прямыми наблюдениями. Однако существуют весомые косвенные свидетельства в пользу его существования, а именно: потери энергии в тесных двойных системах, содержащих компактные гравитирующие объекты (такие как нейтронные звезды или чёрные дыры), в частности, в знаменитой системе PSR B1913+16 (пульсаре Халса - Тейлора) - хорошо согласуются с моделью ОТО, в которой эта энергия уносится именно гравитационным излучением.

Гравитационное излучение могут генерировать только системы с переменным квадрупольным или более высокими мультипольными моментами , этот факт говорит о том, что гравитационное излучение большинства природных источников направленное, что существенно усложняет его обнаружение. Мощность гравитационного n -польного источника пропорциональна , если мультиполь имеет электрический тип, и - если мультиполь магнитного типа , где v - характерная скорость движения источников в излучающей системе, а c - скорость света. Таким образом, доминирующим моментом будет квадрупольный момент электрического типа, а мощность соответствующего излучения равна:

где - тензор квадрупольного момента распределения масс излучающей системы. Константа (1/Вт) позволяет оценить порядок величины мощности излучения.

Начиная с 1969 года (эксперименты Вебера (англ. )), предпринимаются попытки прямого обнаружения гравитационного излучения. В США, Европе и Японии в настоящий момент существует несколько действующих наземных детекторов (LIGO , VIRGO , TAMA (англ. ), GEO 600), а также проект космического гравитационного детектора LISA (Laser Interferometer Space Antenna - лазерно-интерферометрическая космическая антенна). Наземный детектор в России разрабатывается в Научном Центре Гравитационно-Волновых Исследований «Дулкын» республики Татарстан .

Тонкие эффекты гравитации

Измерение кривизны пространства на орбите Земли (рисунок художника)

Помимо классических эффектов гравитационного притяжения и замедления времени, общая теория относительности предсказывает существование других проявлений гравитации, которые в земных условиях весьма слабы и их обнаружение и экспериментальная проверка поэтому весьма затруднительны. До последнего времени преодоление этих трудностей представлялось за пределами возможностей экспериментаторов.

Среди них, в частности, можно назвать увлечение инерциальных систем отсчета (или эффект Лензе-Тирринга) и гравитомагнитное поле . В 2005 году автоматический аппарат НАСА Gravity Probe B провёл беспрецедентный по точности эксперимент по измерению этих эффектов вблизи Земли. Обработка полученных данных велась до мая 2011 года и подтвердила существование и величину эффектов геодезической прецессии и увлечения инерциальных систем отсчёта, хотя и с точностью, несколько меньшей изначально предполагавшейся.

После интенсивной работы по анализу и извлечению помех измерений, окончательные итоги миссии были объявлены на пресс-конференции по NASA-TV 4 мая 2011 года и опубликованы в Physical Review Letters . Измеренная величина геодезической прецессии составила −6601,8±18,3 миллисекунды дуги в год, а эффекта увлечения - −37,2±7,2 миллисекунды дуги в год (ср. с теоретическими значениями −6606,1 mas/год и −39,2 mas/год ).

Классические теории гравитации

См. также: Теории гравитации

В связи с тем, что квантовые эффекты гравитации чрезвычайно малы даже в самых экстремальных экспериментальных и наблюдательных условиях, до сих пор не существует их надёжных наблюдений. Теоретические оценки показывают, что в подавляющем большинстве случаев можно ограничиться классическим описанием гравитационного взаимодействия.

Существует современная каноническая классическая теория гравитации - общая теория относительности , и множество уточняющих её гипотез и теорий различной степени разработанности, конкурирующих между собой. Все эти теории дают очень похожие предсказания в рамках того приближения, в котором в настоящее время осуществляются экспериментальные тесты. Далее описаны несколько основных, наиболее хорошо разработанных или известных теорий гравитации.

Общая теория относительности

В стандартном подходе общей теории относительности (ОТО) гравитация рассматривается изначально не как силовое взаимодействие, а как проявление искривления пространства-времени. Таким образом, в ОТО гравитация интерпретируется как геометрический эффект, причём пространство-время рассматривается в рамках неевклидовой римановой (точнее псевдо-римановой) геометрии . Гравитационное поле (обобщение ньютоновского гравитационного потенциала), иногда называемое также полем тяготения, в ОТО отождествляется с тензорным метрическим полем - метрикой четырёхмерного пространства-времени, а напряжённость гравитационного поля - с аффинной связностью пространства-времени, определяемой метрикой.

Стандартной задачей ОТО является определение компонент метрического тензора, в совокупности задающих геометрические свойства пространства-времени, по известному распределению источников энергии-импульса в рассматриваемой системе четырёхмерных координат. В свою очередь знание метрики позволяет рассчитывать движение пробных частиц, что эквивалентно знанию свойств поля тяготения в данной системе. В связи с тензорным характером уравнений ОТО, а также со стандартным фундаментальным обоснованием её формулировки, считается, что гравитация также носит тензорный характер. Одним из следствий является то, что гравитационное излучение должно быть не ниже квадрупольного порядка.

Известно, что в ОТО имеются затруднения в связи с неинвариантностью энергии гравитационного поля, поскольку данная энергия не описывается тензором и может быть теоретически определена разными способами. В классической ОТО также возникает проблема описания спин-орбитального взаимодействия (так как спин протяжённого объекта также не имеет однозначного определения). Считается, что существуют определённые проблемы с однозначностью результатов и обоснованием непротиворечивости (проблема гравитационных сингулярностей).

Однако экспериментально ОТО подтверждается до самого последнего времени (2012 год). Кроме того, многие альтернативные эйнштейновскому, но стандартные для современной физики подходы к формулировке теории гравитации приводят к результату, совпадающему с ОТО в низкоэнергетическом приближении, которое только и доступно сейчас экспериментальной проверке.

Теория Эйнштейна - Картана

Подобное распадение уравнений на два класса имеет место и в РТГ, где второе тензорное уравнение вводится для учёта связи между неевклидовым пространством и пространством Минковского . Благодаря наличию безразмерного параметра в теории Йордана - Бранса - Дикке появляется возможность выбрать его так, чтобы результаты теории совпадали с результатами гравитационных экспериментов. При этом при стремлении параметра к бесконечности предсказания теории становятся всё более близкими к ОТО, так что опровергнуть теорию Йордана - Бранса - Дикке невозможно никаким экспериментом, подтверждающим общую теорию относительности.

Квантовая теория гравитации

Несмотря на более чем полувековую историю попыток, гравитация - единственное из фундаментальных взаимодействий, для которого пока ещё не построена общепризнанная непротиворечивая квантовая теория . При низких энергиях, в духе квантовой теории поля , гравитационное взаимодействие можно представить как обмен гравитонами - калибровочными бозонами со спином 2. Однако получающаяся теория неперенормируема , и поэтому считается неудовлетворительной.

В последние десятилетия разработаны три перспективных подхода к решению задачи квантования гравитации: теория струн , петлевая квантовая гравитация и причинная динамическая триангуляция.

Теория струн

В ней вместо частиц и фонового пространства-времени выступают струны и их многомерные аналоги - браны . Для многомерных задач браны являются многомерными частицами, но с точки зрения частиц, движущихся внутри этих бран, они являются пространственно-временными структурами. Вариантом теории струн является М-теория .

Петлевая квантовая гравитация

В ней делается попытка сформулировать квантовую теорию поля без привязки к пространственно-временному фону, пространство и время по этой теории состоят из дискретных частей. Эти маленькие квантовые ячейки пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время. Хотя многие космологические модели могут описать поведение вселенной только от Планковского времени после Большого Взрыва , петлевая квантовая гравитация может описать сам процесс взрыва, и даже заглянуть раньше. Петлевая квантовая гравитация позволяет описать все частицы стандартной модели , не требуя для объяснения их масс введения бозона Хиггса .

Основная статья: Причинная динамическая триангуляция

В ней пространственно-временное многообразие строится из элементарных евклидовых симплексов (треугольник , тетраэдр , пентахор) размеров порядка планковских с учётом принципа причинности . Четырёхмерность и псевдоевклидовость пространства-времени в макроскопических масштабах в ней не постулируются, а являются следствием теории.

См. также

Примечания

Литература

  • Визгин В. П. Релятивистская теория тяготения (истоки и формирование, 1900-1915). - М.: Наука, 1981. - 352c.
  • Визгин В. П. Единые теории в 1-й трети ХХ в. - М.: Наука, 1985. - 304c.
  • Иваненко Д. Д. , Сарданашвили Г. А. Гравитация. 3-е изд. - М.: УРСС, 2008. - 200с.
  • Мизнер Ч., Торн К., Уилер Дж. Гравитация. - М.: Мир, 1977.
  • Торн К. Черные дыры и складки времени. Дерзкое наследие Эйнштейна. - М.: Государственное издательство физико-математической литературы, 2009.

Ссылки

  • Закон всемирного тяготения или «Почему Луна не падает на Землю?» - Просто о сложном
  • Проблемы гравитации (док. фильм BBC , видео)
  • Земля и гравитация ; Релятивиская теория гравитации (телепередачи Гордон «Диалоги» , видео)
Теории гравитации
Стандартные теории гравитации

Самым главным явлением, постоянно изучаемым физиками, является движение. Электромагнитные явления, законы механики, термодинамические и квантовые процессы – все это широкий спектр изучаемых физикой фрагментов мироздания. И все эти процессы сводятся, так или иначе, к одному – к .

Вконтакте

Все во Вселенной движется. Гравитация – привычное явление для всех людей с самого детства, мы родились в гравитационном поле нашей планеты, это физическое явление воспринимается нами на самом глубоком интуитивном уровне и, казалось бы, даже не требует изучения.

Но, увы, вопрос, почему и каким образом все тела притягиваются друг к другу , остается и на сегодняшний день не до конца раскрытым, хотя и изучен вдоль и поперек.

В этой статье мы рассмотрим, что такое всемирное притяжение по Ньютону – классическую теорию гравитации. Однако прежде чем перейти к формулам и примерам, расскажем о сути проблемы притяжения и дадим ему определение.

Быть может, изучение гравитации стало началом натуральной философии (науки о понимании сути вещей), быть может, натуральная философия породила вопрос о сущности гравитации, но, так или иначе, вопросом тяготения тел заинтересовались еще в Древней Греции .

Движение понималось как суть чувственной характеристики тела, а точнее, тело двигалось, пока наблюдатель это видит. Если мы не можем явление измерить, взвесить, ощутить, значит ли это, что этого явления не существует? Естественно, не значит. И с тех пор, как Аристотель понял это, начались размышления о сути гравитации.

Как оказалось в наши дни, спустя многие десятки веков, гравитация является основой не только земного притяжения и притяжения нашей планеты к , но и основой зарождения Вселенной и почти всех имеющихся элементарных частиц.

Задача движения

Проведем мысленный эксперимент. Возьмем в левую руку небольшой шарик. В правую возьмем такой же. Отпустим правый шарик, и он начнет падать вниз. Левый при этом остается в руке, он по-прежнему недвижим.

Остановим мысленно ход времени. Падающий правый шарик «зависает» в воздухе, левый все также остается в руке. Правый шарик наделен «энергией» движения, левый – нет. Но в чем глубокая, осмысленная разница между ними?

Где, в какой части падающего шарика прописано, что он должен двигаться? У него такая же масса, такой же объем. Он обладает такими же атомами, и они ничем не отличаются от атомов покоящегося шарика. Шарик обладает ? Да, это правильный ответ, но откуда шарику известно, что обладает потенциальной энергией, где это зафиксировано в нем?

Именно эту задачу ставили перед собой Аристотель, Ньютон и Альберт Эйнштейн. И все три гениальных мыслителя отчасти решили для себя эту проблему, но на сегодняшний день существует ряд вопросов, требующих разрешения.

Гравитация Ньютона

В 1666 году величайшим английским физиком и механиком И. Ньютоном открыт закон, способный количественно посчитать силу, благодаря которой вся материя во Вселенной стремится друг к другу. Это явление получило название всемирное тяготение. Когда вас просят: «Сформулируйте закон всемирного тяготения», ваш ответ должен звучать так:

Сила гравитационного взаимодействия, способствующая притяжению двух тел, находится в прямой пропорциональной связи с массами этих тел и в обратной пропорциональной связи с расстоянием между ними.

Важно! В законе притяжения Ньютона используется термин «расстояние». Под этим термином следует понимать не дистанцию между поверхностями тел, а расстояние между их центрами тяжести. К примеру, если два шара радиусами r1 и r2 лежат друг на друге, то дистанция между их поверхностями равна нулю, однако сила притяжения есть. Все дело в том, что расстояние между их центрами r1+r2 отлично от нуля. В космических масштабах это уточнение не суть важно, но для спутника на орбите данная дистанция равна высоте над поверхностью плюс радиус нашей планеты. Расстояние между Землей и Луной также измеряется как расстояние между их центрами, а не поверхностями.

Для закона тяготения формула выглядит следующим образом:

,

  • F – сила притяжения,
  • – массы,
  • r – расстояние,
  • G – гравитационная постоянная, равная 6,67·10−11 м³/(кг·с²).

Что же представляет собой вес, если только что мы рассмотрели силу притяжения?

Сила является векторной величиной, однако в законе всемирного тяготения она традиционно записана как скаляр. В векторной картине закон будет выглядеть таким образом:

.

Но это не означает, что сила обратно пропорциональна кубу дистанции между центрами. Отношение следует воспринимать как единичный вектор, направленный от одного центра к другому:

.

Закон гравитационного взаимодействия

Вес и гравитация

Рассмотрев закон гравитации, можно понять, что нет ничего удивительного в том, что лично мы ощущаем притяжение Солнца намного слабее, чем земное . Массивное Солнце хоть и имеет большую массу, однако оно очень далеко от нас. тоже далеко от Солнца, однако она притягивается к нему, так как обладает большой массой. Каким образом найти силу притяжения двух тел, а именно как вычислить силу тяготения Солнца, Земли и нас с вами – с этим вопросом мы разберемся чуть позже.

Насколько нам известно, сила тяжести равна:

где m – наша масса, а g – ускорение свободного падения Земли (9,81 м/с 2).

Важно! Не бывает двух, трех, десяти видов сил притяжения. Гравитация – единственная сила, дающая количественную характеристику притяжения. Вес (P = mg) и сила гравитации – одно и то же.

Если m – наша масса, M – масса земного шара, R – его радиус, то гравитационная сила, действующая на нас, равна:

Таким образом, поскольку F = mg:

.

Массы m сокращаются, и остается выражение для ускорения свободного падения:

Как видим, ускорение свободного падения – действительно постоянная величина, поскольку в ее формулу входят величины постоянные — радиус, масса Земли и гравитационная постоянная. Подставив значения этих констант, мы убедимся, что ускорение свободного падения равно 9,81 м/с 2 .

На разных широтах радиус планеты несколько отличается, поскольку Земля все-таки не идеальный шар. Из-за этого ускорение свободного падения в отдельных точках земного шара разное.

Вернемся к притяжению Земли и Солнца. Постараемся на примере доказать, что земной шар притягивает нас с вами сильнее, чем Солнце.

Примем для удобства массу человека: m = 100 кг. Тогда:

  • Расстояние между человеком и земным шаром равно радиусу планеты: R = 6,4∙10 6 м.
  • Масса Земли равна: M ≈ 6∙10 24 кг.
  • Масса Солнца равна: Mc ≈ 2∙10 30 кг.
  • Дистанция между нашей планетой и Солнцем (между Солнцем и человеком): r=15∙10 10 м.

Гравитационное притяжение между человеком и Землей:

Данный результат довольно очевиден из более простого выражения для веса (P = mg).

Сила гравитационного притяжения между человеком и Солнцем:

Как видим, наша планета притягивает нас почти в 2000 раз сильнее.

Как найти силу притяжения между Землей и Солнцем? Следующим образом:

Теперь мы видим, что Солнце притягивает нашу планету более чем в миллиард миллиардов раз сильнее, чем планета притягивает нас с вами.

Первая космическая скорость

После того как Исаак Ньютон открыл закон всемирного тяготения, ему стало интересно, с какой скоростью нужно бросить тело, чтобы оно, преодолев гравитационное поле, навсегда покинуло земной шар.

Правда, он представлял себе это несколько иначе, в его понимании была не вертикально стоящая ракета, устремленная в небо, а тело, которое горизонтально совершает прыжок с вершины горы. Это была логичная иллюстрация, поскольку на вершине горы сила притяжения немного меньше .

Так, на вершине Эвереста ускорение свободного падения будет равно не привычные 9,8 м/с 2 , а почти м/с 2 . Именно по этой причине там настолько разряженный , частицы воздуха уже не так привязаны к гравитации, как те, которые «упали» к поверхности.

Постараемся узнать, что такое космическая скорость.

Первая космическая скорость v1 – это такая скорость, при которой тело покинет поверхность Земли (или другой планеты) и перейдет на круговую орбиту.

Постараемся узнать численной значение этой величины для нашей планеты.

Запишем второй закон Ньютона для тела, которое вращается вокруг планеты по круговой орбите:

,

где h — высота тела над поверхностью, R — радиус Земли.

На орбите на тело действует центробежное ускорение , таким образом:

.

Массы сокращаются, получаем:

,

Данная скорость называется первой космической скоростью:

Как можно заметить, космическая скорость абсолютно не зависит от массы тела. Таким образом, любой предмет, разогнанный до скорости 7,9 км/с, покинет нашу планету и перейдет на ее орбиту.

Первая космическая скорость

Вторая космическая скорость

Однако, даже разогнав тело до первой космической скорости, нам не удастся полностью разорвать его гравитационную связь с Землей. Для этого и нужна вторая космическая скорость. При достижении этой скорости тело покидает гравитационное поле планеты и все возможные замкнутые орбиты.

Важно! По ошибке часто считается, что для того чтобы попасть на Луну, космонавтам приходилось достигать второй космической скорости, ведь нужно было сперва «разъединиться» с гравитационным полем планеты. Это не так: пара «Земля — Луна» находятся в гравитационном поле Земли. Их общий центр тяжести находится внутри земного шара.

Для того чтобы найти эту скорость, поставим задачу немного иначе. Допустим, тело летит из бесконечности на планету. Вопрос: какая скорость будет достигнута на поверхности при приземлении (без учета атмосферы, разумеется)? Именно такая скорость и потребуется телу, чтобы покинуть планету.

Закон всемирного тяготения. Физика 9 класс

Закон Всемирного тяготения.

Вывод

Мы с вами узнали, что хотя гравитация является основной силой во Вселенной, многие причины этого явления до сих пор остались загадкой. Мы узнали, что такое сила всемирного тяготения Ньютона, научились считать ее для различных тел, а также изучили некоторые полезные следствия, которые вытекают из такого явления, как всемирный закон тяготения.

Загрузка...