ecosmak.ru

Митохондрия. История открытия рибосом Расположение в клетке и деление

Митохондрия – это двумембранный органоид эукариотической клетки, основная функция которого синтез АТФ – источника энергии для жизнедеятельности клетки.

Количество митохондрий в клетках не постоянно, в среднем от нескольких единиц до нескольких тысяч. Там, где процессы синтеза идут интенсивно, их больше. Также варьирует размер митохондрий и их форма (округлые, вытянутые, спиральные, чашевидные и др.). Чаще имеют округлую вытянутую форму, диаметром до 1 микрометра и длиной до 10 мкм. Могут перемещаться в клетке с током цитоплазмы или оставаться в одном положении. Перемещаются к местам, где больше всего требуется выработка энергии.

Следует иметь в виду, что в клетках АТФ синтезируется не только в митохондриях, но и в цитоплазме в процессе гликолиза . Однако эффективность этих реакций невысока. Особенность функции митохондрий в том, что в них протекают реакции не только бескислородного окисления, но и кислородный этап энергетического обмена.

Другими словами, функция митохондрий – активное участие в клеточном дыхании, к которому относят множество реакций окисления органических веществ, переноса протонов водорода и электронов, идущих с выделением энергии, которая аккумулируется в АТФ.

Ферменты митохондрий

Ферменты транслоказы внутренней мембраны митохондрий осуществляют активный транспорт АДФ и АТФ.

В структуре крист выделяют элементарные частицы, состоящие из головки, ножки и основания. На головках, состоящих из фермента АТФазы , происходит синтез АТФ. АТФаза обеспечивает сопряжение фосфорилирования АДФ с реакциями дыхательной цепи.

Компоненты дыхательной цепи находятся в основании элементарных частиц в толще мембраны.

В матриксе находится большая часть ферментов цикла Кребса и окисления жирных кислот.

В результате активности электротранспортной дыхательной цепи ионы водорода поступают в нее из матрикса, а высвобождаются на наружной стороне внутренней мембраны. Это осуществляют определенные мембранные ферменты. Разница в концентрации ионов водорода по разные стороны мембраны приводит к возникновению градиента pH.

Энергию для поддержания градиента поставляет перенос электронов по дыхательной цепи. Иначе ионы водорода диффундировали бы обратно.

Энергия градиента pH используется для синтеза АТФ из АДФ:

АДФ + Ф = АТФ + H 2 O (реакция обратима)

Образующаяся вода ферментативно удаляется. Это, наряду с другими факторами, облегчает протекание реакции слева направо.

Митохондрии — это микроскопические мембранные органоиды, которые обеспечивают клетку энергией. Поэтому их называют энергетическими станциями (аккумулятором) клеток.

Митохондрии отсутствуют в клетках простейших организмов, бактерий, энтамеб, которые живут без использования кислорода. Некоторые зеленые водоросли, трипаносомы содержат одну большую митохондрию, а клетки сердечной мышцы, мозга имеют от 100 до 1000 данных органелл.

Особенности строения

Митохондрии относятся к двухмембранным органеллам, имеют внешнюю и внутреннюю оболочки, межмембранное пространство между ними и матрикс.

Внешняя мембрана . Она гладкая, не имеет складок, отграничивает внутреннее содержимое от цитоплазмы. Ширина ее равна 7нм, в составе находятся липиды и белки. Важную роль выполняет порин - белок, образующий каналы во внешней мембране. Они обеспечивают ионный и молекулярный обмен.

Межмембранное пространство . Величина межмембранного пространства около 20нм. Вещество, заполняющее его по составу сходно с цитоплазмой, за исключением крупных молекул, которые могут сюда проникнуть только путем активного транспорта.

Внутренняя мембрана . Построена в основном из белка, только треть отводится на липидные вещества. Большое количество белков являются транспортными, так как внутренняя мембрана лишена свободно проходимых пор. Она формирует много выростов – крист, которые выглядят, как приплюснутые гребни. Окисление органических соединений до CO 2 в митохондриях происходит на мембранах крист. Этот процесс кислородзависимый и осуществляется под действием АТФ-синтетазы. Высвобожденная энергия сохраняется в виде молекул АТФ и используется по мере необходимости.

Матрикс – внутренняя среда митохондрий, имеет зернистую однородную структуру. В электронном микроскопе можно увидеть гранулы и нити в клубках, которые свободно лежат между кристами. В матриксе находится полуавтономная система синтеза белка – здесь расположены ДНК, все виды РНК, рибосомы. Но все же большая часть белков поставляется с ядра, поэтому митохондрии называют полуавтономными органеллами.

Расположение в клетке и деление

Хондриом – это группа митохондрий, которые сосредоточены в одной клетке. Они по-разному располагаются в цитоплазме, что зависит от специализации клеток. Размещение в цитоплазме также зависит от окружающих ее органелл и включений. В клетках растений они занимают периферию, так как к оболочке митохондрии отодвигаются центральной вакуолью. В клетках почечного эпителия мембрана образует выпячивания, между которыми находятся митохондрии.

В стволовых клетках, где энергия используется равномерно всеми органоидами, митохондрии размещены хаотично. В специализированных клетках они, в основном, сосредоточены в местах наибольшего потребления энергии. К примеру, в поперечно-полосатой мускулатуре они расположены возле миофибрилл. В сперматозоидах они спирально охватывают ось жгутика, так как для приведения его в движение и перемещения сперматозоида нужно много энергии. Простейшие, которые передвигаются при помощи ресничек, также содержат большое количество митохондрий у их основания.

Деление . Митохондрии способны к самостоятельному размножению, имея собственный геном. Органеллы делятся с помощью перетяжки или перегородок. Формирование новых митохондрий в разных клетках отличается периодичностью, например, в печеночной ткани они сменяются каждые 10 дней.

Функции в клетке

  1. Основная функция митохондрий – образование молекул АТФ.
  2. Депонирование ионов Кальция.
  3. Участие в обмене воды.
  4. Синтез предшественников стероидных гормонов.

Молекулярная биология – это наука, изучающая роль митохондрий в метаболизме. В них также идет превращение пирувата в ацетил-коэнзим А, бета-окисление жирных кислот.

Таблица: строение и функции митохондрий (кратко)
Структурные элементы Строение Функции
Наружная мембрана Гладкая оболочка, построена из липидов и белков Отграничивает внутреннее содержимое от цитоплазмы
Межмембранное пространство Находятся ионы водорода, белки, микромолекулы Создает протонный градиент
Внутренняя мембрана Образует выпячивания – кристы, содержит белковые транспортные системы Перенос макромолекул, поддержание протонного градиента
Матрикс Место расположения ферментов цикла Кребса, ДНК, РНК, рибосом Аэробное окисление с высвобождением энергии, превращение пирувата в ацетил-коэнзим А.
Рибосомы Объединённые две субъединицы Синтез белка

Сходство митохондрий и хлоропластов


Общие свойства для митохондрий и хлоропластов обусловлены, прежде всего, наличием двойной мембраны.

Признаки сходства также заключаются в способности самостоятельно синтезировать белок. Эти органеллы имеют свое ДНК, РНК, рибосомы.

И митохондрии и хлоропласты могут делиться с помощью перетяжки.

Объединяет их также возможность продуцировать энергию, митохондрии более специализированы в этой функции, но хлоропласты во время фотосинтезирующих процессов тоже образуют молекулы АТФ. Так, растительные клетки имеют меньше митохондрий, чем животные, потому что частично функции за них выполняют хлоропласты.

Опишем кратко сходства и различия:

  • Являются двомембранными органеллами;
  • внутренняя мембрана образует выпячивания: для митохондрий характерны кристы, для хлоропластов – тиллакоиды;
  • обладают собственным геномом;
  • способны синтезировать белки и энергию.

Различаются данные органоиды своими функциями: митохондрии предназначены для синтеза энергии, здесь осуществляется клеточное дыхание, хлоропласты нужны растительным клеткам для фотосинтеза.

Рибосомы: строение и функции

Определение 1

Замечание 1

Основной функцией рибосом является синтез белка.

Субъединицы рибосом образуются в ядрышке и потом сквозь ядерные поры отдельно друг от друга поступают в цитоплазму.

Их количество в цитоплазме зависит от синтетической активности клетки и может составлять от сотни до тысяч на одну клетку. Наибольшее количество рибосом может быть в клетках, которые синтезируют протеины. Есть они также в митохондриальном матриксе и хлоропластах.

Рибосомы различных организмов – от бактерий до млекопитающих – характеризуются подобной структурой и составом, хотя клетки прокариот имеют рибосомы меньшего размера и в большем количестве.

Каждая субъединица состоит из нескольких разновидностей молекул рРНК и десятков разновидностей белков приблизительно в одинаковой пропорции.

Маленькая и большая субъединицы находятся в цитоплазме одиночно до тех пор, пока не будут задействованы в процессе биосинтеза белка. Они объединяются друг с другом и молекулой иРНК в случае необходимости синтеза и снова распадаются, когда процесс окончен.

Молекулы иРНК, которые были синтезированы в ядре, попадают в цитоплазму к рибосомам. Из цитозоля молекулы тРНК поставляют аминокислоты к рибосомам, где с участием ферментов и АТФ синтезируются белки.

Если с молекулой иРНК соединяются несколько рибосом, то образуются полисомы , которые содержат от 5 до 70 рибосом.

Пластиды: хлоропласты

Пластиды – характерные только для растительных клеток органоиды, отсутствующие в клетках животных, грибов, бактерий и цианобактерий.

Клетки высших растений содержат 10-200 пластид. Их размер от 3 до 10 мкм. Большинство из них имеют форму двояковыпуклой линзы, но иногда могут быть в форме пластинок, палочек, зёрен и чешуек.

В зависимости от присутствующего в пластиде пигмента пигмента эти органоиды делят на группы:

  • хлоропласты (гр. сhloros – зелёный) – зелёного цвета,
  • хромопласты – жёлтого, оранжевого и красноватого цвета,
  • лейкопласты – бесцветные пластиды.

Замечание 2

По мере развития растения пластиды одного типа способны преобразоваться в пластиды другого типа. Такое явление широко распространено в природе: изменение окраски листьев, меняется окраска плодов в процессе созревания.

Большинство водорослей вместо пластид имеют хроматофоры (обычно в клетке он один, имеет значительные размеры, имеет форму спиральной ленты, чаши, сетки или звёздчатой пластинки).

Пластиды имеют достаточно сложное внутреннее строение.

Хлоропласты имеют свои ДНК, РНК, рибосомы, включения: зёрна крахмала, капли жира. Снаружи хлоропласты ограничены двойной мембраной, внутреннее пространство заполнено стромой – полужидким веществом), которое содержит граны - особенные, свойственные лишь хлоропластам структуры.

Граны представлены пакетами плоских круглых мешочков (тилакоидов ), которые сложены как столбик монет перпендикулярно широкой поверхности хлоропласта. Тилакоиды соседних гран между собой соединяются в единую взаимосвязанную систему мембранными каналами (межмембранными ламелами).

В толще и на поверхности гран в определённом порядке расположен хлорофилл .

Хлоропласты имеют разное количество гран.

Пример 1

В хлоропластах клеток шпината содержится по 40-60 гран.

Хлоропласты не прикреплены в определённых местах цитоплазмы, а могут изменять своё положение или пассивно, или активно перемещаются ориентировано к свету (фототаксис ).

Особенно чётко активное движение хлоропластов наблюдается при значительном повышении одностороннего освещения. В таком случае хлоропласты скопляются у боковых стенок клетки, а к ориентируются ребром. При слабом освещении хлоропласты ориентируются к свету более широкой стороной и располагаются вдоль стенки клетки, обращённой к свету. При средней силе освещения хлоропласты занимают срединное положение. Таким образом достигаются наиболее благоприятные условия для процесса фотосинтеза.

Благодаря сложной внутренней пространственной организации структурных элементов хлоропласты способны эффективно поглощать и использовать лучистую энергию, а также происходит разграничение во времени и пространстве многочисленных и разнообразных реакций, составляющих процесс фотосинтеза. Реакции этого процесса, зависимые от света, происходят лишь в тилакоидах, а биохимические (темновые) реакции – в строме хлоропласта.

Замечание 3

Молекула хлорофилла очень подобна молекуле гемоглобина и отличается в основном тем, что в центре молекулы гемоглобина расположен атом железа, а не атом магния, как у хлорофилла.

В природе существует четыре типа хлорофилла: a, b, c, d.

Хлорофиллы a и b содержатся в хлоропластах высших растений и зелёных водорослей, диатомовые водоросли содержат хлорофиллы a и c, красные – a и d . Хлорофиллы a и b изучены лучше других (впервые их выделил в начале ХХ столетия российский учёный М.С. Цвет).

Кроме них существует четыре вида бактериохлорофиллов – зелёных пигментов зелёных и пурпурных бактерий: a, b, c, d.

Большинство бактерий, способных к фотосинтезу, содержат бактериохлорофилл а , некоторые – бактериохлорофилл b, зелёные бактерии – c и d.

Хлорофилл достаточно эффективно поглощает лучистую энергию и передаёт её другим молекулам. Благодаря этому хлорофилл – единственное вещество на Земле, способное обеспечивать процесс фотосинтеза.

Пластидам, как и митохондриям, свойственна в определённой степени автономность внутри клетки. Они способны размножаться в основном путём деления.

Наряду с фотосинтезом в хлоропластах происходит синтез других веществ, таких как белки, липиды, некоторые витамины.

Благодаря наличию в пластидах ДНК, они играют определённую роль в передаче признаков по наследству (цитоплазматическая наследственность ).

Митохондрии – энергетические центры клетки

В цитоплазме большинства животных и растительных клеток содержатся достаточно большие овальные органеллы (0,2 – 7 мкм), покрытые двумя мембранами.

Митохондрии называют силовыми станциями клеток, потому что их основная функция – синтез АТФ. Митохондрии превращают энергию химических связей органических веществ на энергию фосфатных связей молекулы АТФ, которая является универсальным источником энергии осуществления для всех процессов жизнедеятельности клетки и целого организма. АТФ, синтезированная в митохондриях, свободно выходит в цитоплазму и дальше идёт к ядру и органеллам клетки, где используется её химическая энергия.

Митохондрии содержатся почти во всех эукариотических клетках, за исключением анаэробных простейших и эритроцитов. Они расположены в цитоплазме хаотично, но чаще их можно определить возле ядра или в местах с высокой потребностью в энергии.

Пример 2

В мышечных волокнах митохондрии расположены между миофибриллами.

Эти органеллы могут изменять свою структуру и форму, а также двигаться внутри клетки.

Количество органелл может изменяться от десятков до нескольких тысяч в зависимости от активности клетки.

Пример 3

В одной клетке печени млекопитающих содержится более 1000 митохондрий.

Структура митохондрий в некоторой мере отличается у различных типов клеток и тканей, но все митохондрии имеют принципиально одинаковое строение.

Образуются митохондрии путём деления. Во время деления клетки они более-менее равномерно распределяются между дочерними клетками.

Внешняя мембрана гладкая, не образует никаких складок и выростов, легко проницаема для многих органических молекул. Содержит ферменты, которые превращают вещества на реакционно способные субстраты. Участвует в образовании межмембранного пространства.

Внутренняя мембрана плохо проницаема для большинства веществ. Образует много выпячиваний внутрь матрикса – крист . Количество крист в митохондриях разных клеток неодинакова. Их может быть от нескольких десятков до нескольких сотен, причём особенно много их в митохондриях клеток, которые активно функционируют (мышечные). Содержит белки, которые участвуют в трёх важнейших процессах:

  • ферменты, катализирующие окислительно-восстановительные реакции дыхательной цепи и транспорта электронов;
  • специфические транспортные белки, участвующие в образовании катионов водорода в межмембранном пространстве;
  • ферментативный комплекс АТФ-синтетазы, который синтезирует АТФ.

Матрикс – внутреннее пространство митохондрии, ограниченное внутренней мембраной. Он содержит сотни различных ферментов, которые участвуют в разрушении органических веществ вплоть до углекислого газа и воды. При этом освобождается энергия химических связей между атомами молекул, которая в дальнейшем превращается на энергию макроэргических связей в молекуле АТФ. В матриксе также есть рибосомы и молекулы митохондриальной ДНК.

Замечание 4

Благодаря ДНК и рибосомам самих митохондрий обеспечивается синтез белков, необходимых самой органелле, и которые в цитоплазме не образуются.

Митохондрии - это органеллы размером с бактерию (около 1 х 2 мкм). Митохондрии - неотъемлемая часть всех живых эукариотических клеток, обычно в клетке содержится около 2000 митохондрий, общий объем которых составляет до 25% от общего объема клетки. Форма, величина и их число постоянно меняются. Число митохондрий варьирует от нескольких десятков до сотен. Особенно их много в секреторных тканях растений.

Митохондрии независимо от их величины или формы имеют универсальное строение, их ультраструктура однообразна. Митохондрии ограничены двумя мембранами. Наружная митохондриальная мембрана отделяет ее от гиалоплазмы. Обычно она имеет ровные контуры, не образует впячиваний или складок. На нее приходится около 7% от площади всех клеточных мембран. Толщина этой мембраны около 7 нм, она не бывает связана ни с какими другими мембранами цитоплазмы и замкнута сама на себя, так что представляет собой мембранный мешок. Наружную мембрану от внутренней отделяет межмембранное пространство шириной около 10--20 нм. Внутренняя мембрана (толщиной около 7 нм) ограничивает собственно внутреннее содержимое митохондрии, ее матрикс, или митоплазму. Характерной чертой внутренних мембран митохондрий является их способность образовывать многочисленные впячивания внутрь митохондрий. Такие впячивания чаще всего имеют вид плоских гребней, или крист.

Рис. Схема общей организации митохондрии

1 -- внешняя мембрана; 2 -- внутренняя мембрана; 3 -- впячивания внутренней мембраны - кристы; 4 -- места впячиваний, вид с поверхности внутренней мембраны

Митохондрии способны к независимому от ядра синтезу своих белков на собственных рибосомах под контролем митохондриальной ДНК. Митохондрии образуются только путем деления.

Основная функция митохондрий состоит в обеспечении энергетических потребностей клетки путем дыхания. Богатые энергией молекулы АТФ синтезируются при реакции окислительного фосфорилирования. Энергия, запасаемая АТФ, получается в результате окисления в митохондриях различных энергетически богатых веществ, главным образом сахаров. Механизм окислительного фосфорилирования путем хемиосмотического сопряжения открыт в 1960 г. английским биохимиком П.Митчеллом

Основной функцией рибосом является трансляция, то есть синтез белков. На фотографиях, полученных с помощью электронного микроскопа, они выглядят округлыми тельцами диаметром 20 - 30 нм.

Каждая рибосома состоит из 2-х субъединиц неравных размеров, формы и строения. Субъединицы рибосом обозначают по величине коэффициентов седиментации (то есть осаждения при центрифугировании).


По-видимому, малая субъединица располагается поверх большой так, что между частицами сохраняется пространство («туннель»). Туннель используется для размещения м - РНК во время белкового синтеза.

Рибосомы представляют собой крупный рибонуклеопротеидный комплекс с молекулярной массой около 2,5 мДа, состоящий из рибосомных белков, молекул рРНК и ассоциированных с ними факторов трансляции. Рибосомы - немембранные органеллы, на которых происходит синтез белка в клетке. Они представляют собой сферические структуры с диаметром около 20 нм. Эти самые мелкие клеточные органеллы устроены чрезвычайно сложно. Ни одна молекула, входящая в состав рибосом, не повторяется дважды. Лучше других изучены рибосомы бактерии Е. coli.

Маргоулиц, Кайер и Кларес – первыми предположили Эндосимбиотическую теорию, а Лиин продолжил ее.

Наибольшее распространение получила гипотеза об эндосимбиотическом происхождении митохондрий, в соответствии с которой современные митохондрии животных берут свое начало от альфа-протеобактерий (к которым принадлежит современная Rickettsia prowazekii), внедрившихся в цитозоль клеток-предшественников. Считается, что за время эндосимбиоза бактерии передали большую часть своих жизненно важных генов хромосомам клетки-хозяина, сохранив в своем геноме (в случае клеток человека) информацию лишь о 13 полипептидах, 22 тРНК и двух рРНК. Все полипептиды входят в состав ферментативных комплексов системы окислительного фосфорилирования митохондрий.

митохондрии образуются за счет эндоцитоза древней крупной анаэробной прокариоты, которая поглотила более мелкую аэробную прокариоту. Отношение таких клеток сначала были симбиотические, а затем крупная клетка стала контролировать процессы, происходящие в митохондрии.

Доказательства:

Разница в строении внутренней и наружной мембраны митохондрий

Наличие в митохондриях собственной кольцевой ДНК (как у бактерий), которая содержит гены для определенных митохондриальных белков

Наличие в мембране собственного белок-синтезирующего аппарата, причем рибосомы в нем прокариотного типа

Деление митохондрий происходит простым бинарным путем, либо почкованием и не зависит от деления клетки.

Несмотря на определенную независимость митохондрии, находятся под контролем эукариотной клетки. Например, в гиалоплазме синтезируется некоторые белки, необходимые для нормального функционирования митохродний, и некоторых белковых факторов, которые регулируют деление митохондрий.

ДНК митохондрий и пластид, в отличие от ДНК большинства прокариот, содержат интроны.

В собственной ДНК митохондрий и хлоропластов закодирована только часть их белков, а остальные закодированы в ДНК ядра клетки. В ходе эволюции происходило «перетекание» части генетического материала из генома митохондрий и хлоропластов в ядерный геном. Этим объясняется тот факт, что ни хлоропласты, ни митохондрии не могут более существовать (размножаться) независимо.

Не решён вопрос о происхождении ядерно-цитоплазматического компонента (ЯЦК), захватившего прото-митохондрии. Ни бактерии, ни археи не способны к фагоцитозу, питаясь исключительно осмотрофно. Молекулярно-биологические и биохимические исследования указывают на химерную архейно-бактериальную сущность ЯЦК. Как произошло слияние организмов из двух доменов, также не ясно.

Теорию эндосимбиотического происхождения хлоропластов впервые предложил в 1883 году Андреас Шимпер, показавший их саморепликацию внутри клетки. Фаминцин в 1907 году, опираясь на работы Шимпера, также пришёл к выводу, что хлоропласты являются симбионтами, как и водоросли в составе лишайников.

В 1920-е годы теория была развита Б. М. Козо-Полянским, было высказано предположение, что симбионтами являются и митохондрии

Клеточное ядро, нуклеоцитоплазма

Смешение у эукариот многих свойств, характерных для архей и бактерий, позволило предположить симбиотическое происхождение ядра от метаногенной архебактерии, внедрившейся в клетку миксобактерии. Гистоны, к примеру, обнаружены у эукариот и некоторых архей, кодирующие их гены весьма схожи. Другая гипотеза, объясняющая сочетание у эукариот молекулярных признаков архей и эубактерий, состоит в том, что на некотором этапе эволюции похожие на архей предки нуклеоцитоплазматического компонента эукариот приобрели способность к усиленному обмену генами с эубактериями путём горизонтального переноса генов

В последнее десятилетие сформировалась также гипотеза вирусного эукариогенеза (англ. viral eukaryogenesis). В её основании лежит ряд сходств устройства генетического аппарата эукариот и вирусов: линейное строение ДНК, её тесное взаимодействие с белками и др. Было показано сходство ДНК-полимеразы эукариот и поксивирусов, что сделало именно их предков основными кандидатами на роль ядра.

Жгутики и реснички

Линн Маргулис предположила в том числе происхождение жгутиков и ресничек от симбиотических спирохет. Несмотря на сходство размеров и строения указанных органелл и бактерий и существование Mixotricha paradoxa, использующей спирохет для движения, в жгутиках не было найдено никаких специфически спирохетных белков. Однако известен общий для всех бактерий и архей белок FtsZ, гомологичный тубулину и, возможно, являющийся его предшественником. Жгутики и реснички не обладают такими признаками бактериальных клеток, как замкнутая наружная мембрана, собственный белоксинтезирующий аппарат и способность к делению. Данные о наличии ДНК в базальных тельцах, появившиеся в 1990-е годы, были впоследствии опровергнуты. Увеличение числа базальных телец и гомологичных им центриолей происходит не путём деления, а путём достраивания нового органоида рядом со старым.

Пероксисомы

Кристиан де Дюв обнаружил пероксисомы в 1965 году. Ему же принадлежит предположение, что пероксисомы были первыми эндосимбионтами эукариотической клетки, позволившими ей выживать при нарастающем количестве свободного молекулярного кислорода в земной атмосфере. Пероксисомы, однако, в отличие от митохондрий и пластид, не имеют ни генетического материала, ни аппарата для синтеза белка. Было показано, что эти органеллы формируются в клетке de novo в ЭПР и нет никаких оснований считать их эндосимбионтами

Загрузка...