ecosmak.ru

Что представляют собой космические лучи. Космические лучи (Космическая радиация)

Материал из Википедии - свободной энциклопедии

Косми́ческие лучи́ - элементарные частицы и ядра атомов, движущиеся с высокими энергиями в космическом пространстве .

Основные сведения

Физику космических лучей принято считать частью физики высоких энергий и физики элементарных частиц .

Физика космических лучей изучает:

  • процессы, приводящие к возникновению и ускорению космических лучей;
  • частицы космических лучей, их природу и свойства;
  • явления, вызванные частицами космических лучей в космическом пространстве, атмосфере Земли и планет.

Изучение потоков высокоэнергетичных заряженных и нейтральных космических частиц, попадающих на границу атмосферы Земли, является важнейшими экспериментальными задачами.

Классификация по происхождению космических лучей:

  • вне нашей Галактики
  • в Галактике
  • на Солнце
  • в межпланетном пространстве

Первичными принято называть внегалактические и галактические лучи. Вторичными принято называть потоки частиц, проходящие и трансформирующиеся в атмосфере Земли.

Космические лучи являются составляющей естественной радиации (фоновой радиации) на поверхности Земли и в атмосфере.

До развития ускорительной техники космические лучи служили единственным источником элементарных частиц высокой энергии. Так, позитрон и мюон были впервые найдены в космических лучах.

Энергетический спектр космических лучей на 43% состоит из энергии протонов , ещё на 23% - из энергии гелия (альфа-частиц) и 34% энергии, переносимой остальными частицами .

По количеству частиц космические лучи на 92% состоят из протонов, на 6% - из ядер гелия, около 1% составляют более тяжелые элементы, и около 1% приходится на электроны . При изучении источников космических лучей вне Солнечной системы протонно-ядерная компонента в основном обнаруживается по создаваемому ею потоку гамма-лучей орбитальными гамма-телескопами, а электронная компонента - по порождаемому ею синхротронному излучению , которое приходится на радиодиапазон (в частности, на метровые волны - при излучении в магнитном поле межзвёздной среды), а при сильных магнитных полях в районе источника космических лучей - и на более высокочастотные диапазоны. Поэтому электронная компонента может обнаруживаться и наземными астрономическими инструментами .

Традиционно частицы, наблюдаемые в КЛ, делят на следующие группы: p (Z=1), \alpha (Z=2), L (Z=3-5), M (Z=6-9), H (Z \geqslant 10), VH (Z \geqslant 20) (соответственно, протоны, альфа-частицы, легкие, средние, тяжелые и сверхтяжелые). Особенностью химического состава первичного космического излучения является аномально высокое (в несколько тысяч раз) содержание ядер группы L (литий , бериллий , бор) по сравнению с составом звёзд и межзвёздного газа . Данное явление объясняется тем, что механизм генерации космических частиц в первую очередь ускоряет тяжелые ядра, которые при взаимодействии с протонами межзвёздной среды распадаются на более лёгкие ядра . Данное предположение подтверждается тем, что КЛ обладают очень высокой степенью изотропии .

История физики космических лучей

Впервые указание на возможность существования ионизирующего излучения внеземного происхождения было получено в начале XX века в опытах по изучению проводимости газов. Обнаруженный спонтанный электрический ток в газе не удавалось объяснить ионизацией, возникающей от естественной радиоактивности Земли. Наблюдаемое излучение оказалось настолько проникающим, что в ионизационных камерах, экранированных толстыми слоями свинца, все равно наблюдался остаточный ток. В 1911-1912 годах был проведен ряд экспериментов с ионизационными камерами на воздушных шарах. Гесс обнаружил, что излучение растет с высотой, в то время как ионизация, вызванная радиоактивностью Земли, должна была бы падать с высотой. В опытах Кольхерстера было доказано, что это излучение направлено сверху вниз.

В 1921-1925 годах американский физик Милликен , изучая поглощение космического излучения в атмосфере Земли в зависимости от высоты наблюдения, обнаружил, что в свинце это излучение поглощается так же, как и гамма-излучение ядер. Милликен первым и назвал это излучение космическими лучами. В 1925 году советские физики Л. А. Тувим и Л. В. Мысовский провели измерение поглощения космического излучения в воде: оказалось, что это излучение поглощалось в десять раз слабее, чем гамма-излучение ядер. Мысовский и Тувим обнаружили также, что интенсивность излучения зависит от барометрического давления - открыли «барометрический эффект». Опыты Д. В. Скобельцына с камерой Вильсона, помещенной в постоянное магнитное поле, дали возможность «увидеть», за счет ионизации, следы (треки) космических частиц. Д. В. Скобельцын открыл ливни космических частиц. Эксперименты в космических лучах позволили сделать ряд принципиальных для физики микромира открытий.

Солнечные космические лучи

Солнечными космическими лучами (СКЛ) называются энергичные заряженные частицы - электроны, протоны и ядра, - инжектированные Солнцем в межпланетное пространство. Энергия СКЛ простирается от нескольких кэВ до нескольких ГэВ. В нижней части этого диапазона СКЛ граничат с протонами высокоскоростных потоков солнечного ветра . Частицы СКЛ появляются вследствие солнечных вспышек .

Космические лучи ультравысоких энергий

Энергия некоторых частиц превышает предел ГЗК (Грайзена - Зацепина - Кузьмина) - теоретический предел энергии для космических лучей 5·10 19 эВ , вызванный их взаимодействием с фотонами реликтового излучения . Несколько десятков таких частиц за год было зарегистрировано обсерваторией AGASA (англ.) русск. . Эти наблюдения ещё не имеют достаточно обоснованного научного объяснения.

Регистрация космических лучей

Долгое время после открытия космических лучей, методы их регистрации не отличались от методов регистрации частиц в ускорителях, чаще всего - газоразрядные счётчики или ядерные фотографические эмульсии , поднимаемые в стратосферу, или в космическое пространство. Но данный метод не позволяет вести систематические наблюдения частиц с высокой энергией, так как они появляются достаточно редко, а пространство, в котором такой счётчик может вести наблюдения, ограничено его размерами.

Современные обсерватории работают на других принципах. Когда высокоэнергетичная частица входит в атмосферу, она, взаимодействуя с атомами воздуха на первых 100 г/см², рождает целый шквал частиц, в основном пионов и мюонов , которые, в свою очередь, рождают другие частицы, и так далее. Образуется конус из частиц, который называют ливнем. Такие частицы двигаются со скоростью, превышающей скорость света в воздухе, благодаря чему возникает черенковское свечение , регистрируемое телескопами. Такая методика позволяет следить за областями неба площадью в сотни квадратных километров.

Значение для космических полётов

Космонавты МКС , когда закрывают глаза, не чаще, чем раз в 3 минуты, видят вспышки света , возможно, это явление связано с воздействием частиц высоких энергий, попадающих в сетчатку глаза. Однако экспериментально это не подтверждено, возможно, что этот эффект имеет под собой исключительно психологические основы.

Длительное воздействие космической радиации способно очень негативно отразиться на здоровье человека. Для дальнейшей экспансии человечества к иным планетам Солнечной системы следует разработать надёжную защиту от подобных опасностей - учёные из России и США уже ищут способы решения этой проблемы.

См. также

  • Обсерватория Пьер Оже (англ. )

Напишите отзыв о статье "Космические лучи"

Примечания

  1. // Физическая энциклопедия / Гл. ред. А. М. Прохоров . - М .: Большая Российская энциклопедия , 1990. - Т. 2. Добротность - Магнитооптика. - С. 471-474. - 703 с. - ISBN 5852700614 .
  2. Гинзбург В.Л. , Сыроватский С.И. Современное состояние вопроса о происхождении космических лучей // УФН . - 1960. - № 7.- С. 411-469. - ISSN 1996-6652. - URL: ufn.ru/ru/articles/1960/7/b/
  3. , с. 18.
  4. В. Л. Гинзбург Космические лучи: 75 лет исследований и перспективы на будущее // Земля и Вселенная . - М .: Наука , 1988. - № 3 . - С. 3-9 .
  5. , с. 236.

Литература

  • С. В. Мурзин. Введение в физику космических лучей. М.: Атомиздат , 1979.
  • Модель космического пространства - М.: Изд-во МГУ , в 3-х томах.
  • А. Д. Филоненко (рус.) // УФН . - 2012. - Т. 182 . - С. 793-827 .
  • Дорман Л.И. Экспериментальные и теоретические основы астрофизики космических лучей. - М .: Наука, 1975. - 464 с.
  • ред. Ширков Д.В. Физика микромира. - М .: Советская энциклопедия, 1980. - 528 с.

Ссылки

Отрывок, характеризующий Космические лучи

В это время Петя, на которого никто не обращал внимания, подошел к отцу и, весь красный, ломающимся, то грубым, то тонким голосом, сказал:
– Ну теперь, папенька, я решительно скажу – и маменька тоже, как хотите, – я решительно скажу, что вы пустите меня в военную службу, потому что я не могу… вот и всё…
Графиня с ужасом подняла глаза к небу, всплеснула руками и сердито обратилась к мужу.
– Вот и договорился! – сказала она.
Но граф в ту же минуту оправился от волнения.
– Ну, ну, – сказал он. – Вот воин еще! Глупости то оставь: учиться надо.
– Это не глупости, папенька. Оболенский Федя моложе меня и тоже идет, а главное, все равно я не могу ничему учиться теперь, когда… – Петя остановился, покраснел до поту и проговорил таки: – когда отечество в опасности.
– Полно, полно, глупости…
– Да ведь вы сами сказали, что всем пожертвуем.
– Петя, я тебе говорю, замолчи, – крикнул граф, оглядываясь на жену, которая, побледнев, смотрела остановившимися глазами на меньшого сына.
– А я вам говорю. Вот и Петр Кириллович скажет…
– Я тебе говорю – вздор, еще молоко не обсохло, а в военную службу хочет! Ну, ну, я тебе говорю, – и граф, взяв с собой бумаги, вероятно, чтобы еще раз прочесть в кабинете перед отдыхом, пошел из комнаты.
– Петр Кириллович, что ж, пойдем покурить…
Пьер находился в смущении и нерешительности. Непривычно блестящие и оживленные глаза Наташи беспрестанно, больше чем ласково обращавшиеся на него, привели его в это состояние.
– Нет, я, кажется, домой поеду…
– Как домой, да вы вечер у нас хотели… И то редко стали бывать. А эта моя… – сказал добродушно граф, указывая на Наташу, – только при вас и весела…
– Да, я забыл… Мне непременно надо домой… Дела… – поспешно сказал Пьер.
– Ну так до свидания, – сказал граф, совсем уходя из комнаты.
– Отчего вы уезжаете? Отчего вы расстроены? Отчего?.. – спросила Пьера Наташа, вызывающе глядя ему в глаза.
«Оттого, что я тебя люблю! – хотел он сказать, но он не сказал этого, до слез покраснел и опустил глаза.
– Оттого, что мне лучше реже бывать у вас… Оттого… нет, просто у меня дела.
– Отчего? нет, скажите, – решительно начала было Наташа и вдруг замолчала. Они оба испуганно и смущенно смотрели друг на друга. Он попытался усмехнуться, но не мог: улыбка его выразила страдание, и он молча поцеловал ее руку и вышел.
Пьер решил сам с собою не бывать больше у Ростовых.

Петя, после полученного им решительного отказа, ушел в свою комнату и там, запершись от всех, горько плакал. Все сделали, как будто ничего не заметили, когда он к чаю пришел молчаливый и мрачный, с заплаканными глазами.
На другой день приехал государь. Несколько человек дворовых Ростовых отпросились пойти поглядеть царя. В это утро Петя долго одевался, причесывался и устроивал воротнички так, как у больших. Он хмурился перед зеркалом, делал жесты, пожимал плечами и, наконец, никому не сказавши, надел фуражку и вышел из дома с заднего крыльца, стараясь не быть замеченным. Петя решился идти прямо к тому месту, где был государь, и прямо объяснить какому нибудь камергеру (Пете казалось, что государя всегда окружают камергеры), что он, граф Ростов, несмотря на свою молодость, желает служить отечеству, что молодость не может быть препятствием для преданности и что он готов… Петя, в то время как он собирался, приготовил много прекрасных слов, которые он скажет камергеру.
Петя рассчитывал на успех своего представления государю именно потому, что он ребенок (Петя думал даже, как все удивятся его молодости), а вместе с тем в устройстве своих воротничков, в прическе и в степенной медлительной походке он хотел представить из себя старого человека. Но чем дальше он шел, чем больше он развлекался все прибывающим и прибывающим у Кремля народом, тем больше он забывал соблюдение степенности и медлительности, свойственных взрослым людям. Подходя к Кремлю, он уже стал заботиться о том, чтобы его не затолкали, и решительно, с угрожающим видом выставил по бокам локти. Но в Троицких воротах, несмотря на всю его решительность, люди, которые, вероятно, не знали, с какой патриотической целью он шел в Кремль, так прижали его к стене, что он должен был покориться и остановиться, пока в ворота с гудящим под сводами звуком проезжали экипажи. Около Пети стояла баба с лакеем, два купца и отставной солдат. Постояв несколько времени в воротах, Петя, не дождавшись того, чтобы все экипажи проехали, прежде других хотел тронуться дальше и начал решительно работать локтями; но баба, стоявшая против него, на которую он первую направил свои локти, сердито крикнула на него:
– Что, барчук, толкаешься, видишь – все стоят. Что ж лезть то!
– Так и все полезут, – сказал лакей и, тоже начав работать локтями, затискал Петю в вонючий угол ворот.
Петя отер руками пот, покрывавший его лицо, и поправил размочившиеся от пота воротнички, которые он так хорошо, как у больших, устроил дома.
Петя чувствовал, что он имеет непрезентабельный вид, и боялся, что ежели таким он представится камергерам, то его не допустят до государя. Но оправиться и перейти в другое место не было никакой возможности от тесноты. Один из проезжавших генералов был знакомый Ростовых. Петя хотел просить его помощи, но счел, что это было бы противно мужеству. Когда все экипажи проехали, толпа хлынула и вынесла и Петю на площадь, которая была вся занята народом. Не только по площади, но на откосах, на крышах, везде был народ. Только что Петя очутился на площади, он явственно услыхал наполнявшие весь Кремль звуки колоколов и радостного народного говора.
Одно время на площади было просторнее, но вдруг все головы открылись, все бросилось еще куда то вперед. Петю сдавили так, что он не мог дышать, и все закричало: «Ура! урра! ура!Петя поднимался на цыпочки, толкался, щипался, но ничего не мог видеть, кроме народа вокруг себя.
На всех лицах было одно общее выражение умиления и восторга. Одна купчиха, стоявшая подле Пети, рыдала, и слезы текли у нее из глаз.
– Отец, ангел, батюшка! – приговаривала она, отирая пальцем слезы.
– Ура! – кричали со всех сторон. С минуту толпа простояла на одном месте; но потом опять бросилась вперед.
Петя, сам себя не помня, стиснув зубы и зверски выкатив глаза, бросился вперед, работая локтями и крича «ура!», как будто он готов был и себя и всех убить в эту минуту, но с боков его лезли точно такие же зверские лица с такими же криками «ура!».
«Так вот что такое государь! – думал Петя. – Нет, нельзя мне самому подать ему прошение, это слишком смело!Несмотря на то, он все так же отчаянно пробивался вперед, и из за спин передних ему мелькнуло пустое пространство с устланным красным сукном ходом; но в это время толпа заколебалась назад (спереди полицейские отталкивали надвинувшихся слишком близко к шествию; государь проходил из дворца в Успенский собор), и Петя неожиданно получил в бок такой удар по ребрам и так был придавлен, что вдруг в глазах его все помутилось и он потерял сознание. Когда он пришел в себя, какое то духовное лицо, с пучком седевших волос назади, в потертой синей рясе, вероятно, дьячок, одной рукой держал его под мышку, другой охранял от напиравшей толпы.
– Барчонка задавили! – говорил дьячок. – Что ж так!.. легче… задавили, задавили!
Государь прошел в Успенский собор. Толпа опять разровнялась, и дьячок вывел Петю, бледного и не дышащего, к царь пушке. Несколько лиц пожалели Петю, и вдруг вся толпа обратилась к нему, и уже вокруг него произошла давка. Те, которые стояли ближе, услуживали ему, расстегивали его сюртучок, усаживали на возвышение пушки и укоряли кого то, – тех, кто раздавил его.
– Этак до смерти раздавить можно. Что же это! Душегубство делать! Вишь, сердечный, как скатерть белый стал, – говорили голоса.
Петя скоро опомнился, краска вернулась ему в лицо, боль прошла, и за эту временную неприятность он получил место на пушке, с которой он надеялся увидать долженствующего пройти назад государя. Петя уже не думал теперь о подаче прошения. Уже только ему бы увидать его – и то он бы считал себя счастливым!
Во время службы в Успенском соборе – соединенного молебствия по случаю приезда государя и благодарственной молитвы за заключение мира с турками – толпа пораспространилась; появились покрикивающие продавцы квасу, пряников, мака, до которого был особенно охотник Петя, и послышались обыкновенные разговоры. Одна купчиха показывала свою разорванную шаль и сообщала, как дорого она была куплена; другая говорила, что нынче все шелковые материи дороги стали. Дьячок, спаситель Пети, разговаривал с чиновником о том, кто и кто служит нынче с преосвященным. Дьячок несколько раз повторял слово соборне, которого не понимал Петя. Два молодые мещанина шутили с дворовыми девушками, грызущими орехи. Все эти разговоры, в особенности шуточки с девушками, для Пети в его возрасте имевшие особенную привлекательность, все эти разговоры теперь не занимали Петю; ou сидел на своем возвышении пушки, все так же волнуясь при мысли о государе и о своей любви к нему. Совпадение чувства боли и страха, когда его сдавили, с чувством восторга еще более усилило в нем сознание важности этой минуты.
Вдруг с набережной послышались пушечные выстрелы (это стреляли в ознаменование мира с турками), и толпа стремительно бросилась к набережной – смотреть, как стреляют. Петя тоже хотел бежать туда, но дьячок, взявший под свое покровительство барчонка, не пустил его. Еще продолжались выстрелы, когда из Успенского собора выбежали офицеры, генералы, камергеры, потом уже не так поспешно вышли еще другие, опять снялись шапки с голов, и те, которые убежали смотреть пушки, бежали назад. Наконец вышли еще четверо мужчин в мундирах и лентах из дверей собора. «Ура! Ура! – опять закричала толпа.
– Который? Который? – плачущим голосом спрашивал вокруг себя Петя, но никто не отвечал ему; все были слишком увлечены, и Петя, выбрав одного из этих четырех лиц, которого он из за слез, выступивших ему от радости на глаза, не мог ясно разглядеть, сосредоточил на него весь свой восторг, хотя это был не государь, закричал «ура!неистовым голосом и решил, что завтра же, чего бы это ему ни стоило, он будет военным.
Толпа побежала за государем, проводила его до дворца и стала расходиться. Было уже поздно, и Петя ничего не ел, и пот лил с него градом; но он не уходил домой и вместе с уменьшившейся, но еще довольно большой толпой стоял перед дворцом, во время обеда государя, глядя в окна дворца, ожидая еще чего то и завидуя одинаково и сановникам, подъезжавшим к крыльцу – к обеду государя, и камер лакеям, служившим за столом и мелькавшим в окнах.
За обедом государя Валуев сказал, оглянувшись в окно:
– Народ все еще надеется увидать ваше величество.
Обед уже кончился, государь встал и, доедая бисквит, вышел на балкон. Народ, с Петей в середине, бросился к балкону.
– Ангел, отец! Ура, батюшка!.. – кричали народ и Петя, и опять бабы и некоторые мужчины послабее, в том числе и Петя, заплакали от счастия. Довольно большой обломок бисквита, который держал в руке государь, отломившись, упал на перилы балкона, с перил на землю. Ближе всех стоявший кучер в поддевке бросился к этому кусочку бисквита и схватил его. Некоторые из толпы бросились к кучеру. Заметив это, государь велел подать себе тарелку бисквитов и стал кидать бисквиты с балкона. Глаза Пети налились кровью, опасность быть задавленным еще более возбуждала его, он бросился на бисквиты. Он не знал зачем, но нужно было взять один бисквит из рук царя, и нужно было не поддаться. Он бросился и сбил с ног старушку, ловившую бисквит. Но старушка не считала себя побежденною, хотя и лежала на земле (старушка ловила бисквиты и не попадала руками). Петя коленкой отбил ее руку, схватил бисквит и, как будто боясь опоздать, опять закричал «ура!», уже охриплым голосом.
Государь ушел, и после этого большая часть народа стала расходиться.
– Вот я говорил, что еще подождать – так и вышло, – с разных сторон радостно говорили в народе.
Как ни счастлив был Петя, но ему все таки грустно было идти домой и знать, что все наслаждение этого дня кончилось. Из Кремля Петя пошел не домой, а к своему товарищу Оболенскому, которому было пятнадцать лет и который тоже поступал в полк. Вернувшись домой, он решительно и твердо объявил, что ежели его не пустят, то он убежит. И на другой день, хотя и не совсем еще сдавшись, но граф Илья Андреич поехал узнавать, как бы пристроить Петю куда нибудь побезопаснее.

15 го числа утром, на третий день после этого, у Слободского дворца стояло бесчисленное количество экипажей.
Залы были полны. В первой были дворяне в мундирах, во второй купцы с медалями, в бородах и синих кафтанах. По зале Дворянского собрания шел гул и движение. У одного большого стола, под портретом государя, сидели на стульях с высокими спинками важнейшие вельможи; но большинство дворян ходило по зале.
Все дворяне, те самые, которых каждый день видал Пьер то в клубе, то в их домах, – все были в мундирах, кто в екатерининских, кто в павловских, кто в новых александровских, кто в общем дворянском, и этот общий характер мундира придавал что то странное и фантастическое этим старым и молодым, самым разнообразным и знакомым лицам. Особенно поразительны были старики, подслеповатые, беззубые, плешивые, оплывшие желтым жиром или сморщенные, худые. Они большей частью сидели на местах и молчали, и ежели ходили и говорили, то пристроивались к кому нибудь помоложе. Так же как на лицах толпы, которую на площади видел Петя, на всех этих лицах была поразительна черта противоположности: общего ожидания чего то торжественного и обыкновенного, вчерашнего – бостонной партии, Петрушки повара, здоровья Зинаиды Дмитриевны и т. п.
Пьер, с раннего утра стянутый в неловком, сделавшемся ему узким дворянском мундире, был в залах. Он был в волнении: необыкновенное собрание не только дворянства, но и купечества – сословий, etats generaux – вызвало в нем целый ряд давно оставленных, но глубоко врезавшихся в его душе мыслей о Contrat social [Общественный договор] и французской революции. Замеченные им в воззвании слова, что государь прибудет в столицу для совещания с своим народом, утверждали его в этом взгляде. И он, полагая, что в этом смысле приближается что то важное, то, чего он ждал давно, ходил, присматривался, прислушивался к говору, но нигде не находил выражения тех мыслей, которые занимали его.

Космические лучи — это потоки заряженных частиц высоких энергий, которые состоят из протонов. Они приходят к Земле со всех направлений межзвёздного пространства, в том числе от Солнца. После , происходящих на , интенсивность потоков резко возрастает.Космические лучи напоминают очень разреженный газ, в котором частички почти не взаимодействуют между собой. Но, пролетая сквозь вещество, сталкиваются с ядрами его атомов и рождают нестабильные элементарные частицы (по этим следам их и обнаруживают). Околоземное космическое пространство пронизывают космические лучи двух типов: стационарные и нестационарные. К стационарным относятся потоки частиц из , нестационарные – это лучи солнечного происхождения.

Каждую секунду потоки всевозможных частиц обрушиваются на Землю из глубин космоса. Космические лучи преодолевают гигантские расстояния, но не теряют своей мощи. Они вторгаются в атмосферу нашей планеты, ионизируя составляющие её газы. Пионером этого открытия стал В. Гесс: при помощи воздушного шара он сумел определить, что ионизация газов с высотой не уменьшается, как считалось, а увеличивается. Это свидетельствовало о том, что радиоактивное вещество, ответственное за этот процесс, находится не в нашей планете.

Виды

Галактические

Энергии первичных космических лучей, представляющих собой атомные ядра и элементарные частицы, колоссальны, и достигают значений в сотни ГэВ. При прохождении сквозь земную атмосферу, они создают новые частицы, называемые вторичными космическими лучами. Космические лучи преодолевают огромные расстояния внутри нашей галактики, постоянно изменяя направления. Они обладают почти световыми скоростями, а причина изменения направлений кроется в магнитном поле . Лучам очень сложно покинуть пределы галактики, потому что магнитное поле её замкнуто. Это позволило подтвердить теорию, что магнитное поле в нашей галактике существует, вычислить её напряжённость. Из расчётов получается, что космические лучи проходят расстояния до 10 27 см за периоды, составляющие миллиарды лет. Исходя из времени существования частиц, можно определить мощность их источников. Такими источниками, например, служат . Космические лучи способны нагревать разреженные газы до миллионов градусов. Подобный процесс существует, например, в конвективной зоне Солнца. Из этих газов образуется огромное гало, называемое галактической короной.

Альбедо

Часть лучей отражается земной атмосферой, создавая вторичные частицы – альбедо. Нейтроны альбедо снабжают радиационный пояс протонами, имеющими энергии до 10 3 МэВ и электронами, энергий в несколько МэВ.

Солнечные

Во время вспышек на Солнце выделяются потоки заряженных частиц. Они ускоряются в верхних слоях атмосферы светила и приобретают достаточно высокие энергии. Регистрация их у земной поверхности, на фоне более высокоэнергичных галактических потоков, происходит в виде резкого повышения интенсивности потока космических лучей. Основная масса солнечных лучей – протоны с энергиями в 10 6 эВ, а верхний предел их энергии – 2 . 10 10 эВ.

Лучи ультравысоких энергий

Энергия частиц таких лучей выше допустимого теоретического предела энергии, составляющего 5 . 10 19 эВ. Этот предел обусловлен взаимодействием их с фотонами первичного, реликтового, излучения. Получается, что эти космические лучи - скитальцы из глубин Вселенной. Обсерватория AGASA запеленговала несколько десятков источников частиц ультравысоких энергий в течение года.

Регистрация космических лучей

В современных обсерваториях отслеживание следов космических лучей производится при помощи телескопов. Частицы, имеющие высокие энергии, входя в атмосферу, взаимодействуют с атомами воздуха. В результате этого рождаются потоки пионов и мюонов, которые сами образуют другие частицы. Процесс продолжается дальше, до образования конуса из частиц, именуемого ливнем. Такие частицы обладают скоростью, которая выше световой (в воздухе), поэтому происходит их свечение. Способ даёт возможность отслеживать области неба в сотни км 2 .

КОСМИ́ЧЕСКИЕ ЛУЧИ́, потоки заряженных частиц высокой энергии, которые приходят к Земле со всех сторон из космического пространства и постоянно бомбардируют её атмосферу. В составе космических лучей преобладают протоны, имеются также электроны, ядра гелия и более тяжёлых химических элементов (вплоть до ядер с зарядом Z ≈ 30). Наиболее многочисленны в космических лучах ядра атомов водорода и гелия (≈85 и ≈10% соответственно). Доля других ядер невелика (не превышает ≈5%). Небольшую часть космических лучей составляют электроны и позитроны (менее 1%). Космическое излучение, падающее на границу земной атмосферы, включает все стабильные заряженные частицы и ядра со временами жизни порядка 10 6 лет и более. По существу, истинно «первичными» космическими лучами можно называть только частицы, ускоренные в далёких астрофизических источниках, а «вторичными» – частицы, образовавшиеся в процессе взаимодействия первичных космических лучей с межзвёздным газом. Так, электроны, протоны и ядра гелия, а также углерода, кислорода, железа и др., синтезированные в звёздах, являются первичными. Напротив, ядра лития, бериллия и бора следует считать вторичными. Антипротоны и позитроны частично, если не полностью, вторичны, однако та их доля, которая может иметь первичное происхождение, является ныне предметом исследований.

История исследования космических лучей

В нач. 20 в. в опытах с электроскопами и ионизационными камерами была обнаружена постоянная остаточная ионизация газов, вызываемая каким-то проникающим излучением. В отличие от излучения радиоактивных веществ окружающей среды, проникающее излучение не могли задержать даже толстые слои свинца. Внеземная природа обнаруженного проникающего излучения установлена в 1912 (В. Гесс , Нобелевская премия, 1936) в экспериментах с ионизационными камерами на воздушных шарах. Было найдено, что с увеличением расстояния от поверхности Земли ионизация, вызываемая проникающим излучением, растёт. Его внеземное происхождение окончательно доказал Р. Милликен в 1923–26 в экспериментах по поглощению излучения атмосферой (именно он ввёл термин «космические лучи»).

Природа космических лучей вплоть до 1940-х гг. оставалась неясной. В течение этого времени интенсивно развивалось ядерное направление исследований космических лучей (ядерно-физический аспект) – изучение взаимодействия космических лучей с веществом, образования вторичных частиц и их поглощения в атмосфере. Эти исследования, проводимые при помощи телескопов, счётчиков, Вильсона камер и ядерных фотоэмульсий (поднимаемых на шарах-зондах в стратосферу), привели, в частности, к открытию новых элементарных частиц – позитрона (1932), мюона (1936), π-мезона (1947).

Систематические исследования влияния геомагнитного поля на интенсивность и направление прихода первичных космических лучей показали, что подавляющее большинство частиц космических лучей имеет положительный заряд. С этим связана восточно-западная асимметрия космических лучей: из-за отклонения заряженных частиц в магнитном поле Земли с запада приходит больше частиц, чем с востока. Применение фотоэмульсий позволило установить ядерный состав первичных космических лучей (1948): были обнаружены следы ядер тяжёлых химических элементов, вплоть до железа. Первичные электроны в составе космических лучей впервые были зарегистрированы лишь в 1961 в стратосферных измерениях.

С кон. 1940-х гг. на передний план выдвинулись проблемы происхождения и временны́х вариаций космических лучей (космофизический аспект).

Характеристики и классификация космических лучей

Космические лучи напоминают сильно разреженный релятивистский газ, частицы которого практически не взаимодействуют друг с другом, но испытывают редкие столкновения с веществом межзвёздной и межпланетной сред и подвергаются воздействию космических магнитных полей. Частицы космических лучей обладают огромными кинетическими энергиями (вплоть до Е кин ~ 10 21 эВ). Вблизи Земли подавляющую часть потока космических лучей составляют частицы с энергиями от 10 6 эВ до 10 9 эВ, далее поток космических лучей резко ослабевает. Так, при энергии ~10 12 эВ на границу атмосферы падает не более 1 частицы/(м 2 ∙с), а при Е кин ~ 10 15 эВ – всего 1 частица/(м 2 ∙год). Этим обусловлены определённые трудности в изучении космических лучей высоких и сверхвысоких (экстремальных) энергий. Хотя суммарный поток космических лучей у Земли невелик (всего ок. 1 частицы/(см 2 ∙с)), плотность их энергии (ок. 1 эВ/см 3) в пределах нашей Галактики сравнима с плотностью энергии суммарного электромагнитного излучения звёзд, энергии теплового движения межзвёздного газа и кинетической энергии его турбулентных движений, а также с плотностью энергии магнитного поля Галактики. Отсюда следует, что космические лучи должны играть важную роль во многих астрофизических процессах.

Другая важная особенность космических лучей – нетепловое происхождение их энергии. Действительно, даже при температуре ~10 9 К, по-видимому, близкой к максимальной для звёздных недр, средняя энергия теплового движения частиц ≈3∙10 5 эВ. Основное количество частиц космических лучей, наблюдаемых у Земли, имеет энергию св. 10 8 эВ. Это означает, что космические лучи приобретают энергию путём ускорения в специфических астрофизических процессах плазменной и электромагнитной природы.

По своему происхождению космические лучи можно разделить на несколько групп: 1) космические лучи галактического происхождения (галактические космические лучи); их источником является наша Галактика, в которой происходит ускорение частиц до энергий порядка 10 18 эВ; 2) космические лучи метагалактического происхождения (метагалактические космические лучи); они образуются в других галактиках и имеют самые большие, ультрарелятивистские энергии (св. 10 18 эВ); 3) солнечные космические лучи; генерируются на Солнце или вблизи него во время солнечных вспышек и корональных выбросов масс ; их энергия составляет от 10 6 эВ до св. 10 10 эВ; 4) аномальные космические лучи; образуются в Солнечной системе на периферии гелиосферы ; энергии частиц составляют 1–100 МэВ/нуклон.

По содержанию ядер лития, бериллия и бора, которые образуются в результате взаимодействий космических лучей с атомами межзвёздной среды , можно определить количество вещества Х , через которое прошли космические лучи, блуждая в межзвёздной среде. Величина X примерно равна 5–10 г/см 2 . Время блуждания космических лучей в межзвёздной среде (или время их жизни) и величина X связаны соотношением X≈ ρvt , где ρ – средняя плотность межзвёздной среды, составляющая ~10 – 24 г/см 3 , t – время блуждания космических лучей в этой среде, v – скорость частиц. Обычно полагают, что величина v для ультрарелятивистских космических лучей практически равна скорости света c , так что время их жизни составляет ок. 3·10 8 лет. Оно определяется либо выходом космических лучей из Галактики и её гало, либо их поглощением за счёт неупругих взаимодействий с веществом межзвёздной среды.

Вторгаясь в атмосферу Земли, первичные космические лучи разрушают ядра наиболее распространённых в атмосфере химических элементов – азота и кислорода – и порождают каскадный процесс, в котором участвуют все известные ныне элементарные частицы, в частности такие вторичные частицы, как протоны, нейтроны, мезоны, электроны, а также γ-кванты и нейтрино. Принято характеризовать путь, пройденный частицей космических лучей в атмосфере до столкновения, количеством вещества в граммах, заключённого в столбе сечением 1 см 2 , т. е. выражать пробег частиц в г/см 2 вещества атмосферы. Это означает, что после прохождения толщи атмосферы х (г/см 2) пучком протонов с первоначальной интенсивностью I 0 количество протонов, не испытавших столкновения, будет равно I = I 0 exp(–x /λ), где λ – средний пробег частицы. Для протонов, составляющих основную часть первичных космических лучей, пробег λ в воздухе равен ≈70 г/см 2 , для ядер гелия λ≈25 г/см 2 , для более тяжёлых ядер – ещё меньше. Первое столкновение с атмосферой протоны испытывают в среднем на высоте 20 км (х ≈70 г/см 2). Толщина атмосферы на уровне моря эквивалентна 1030 г/см 2 , т. е. соответствует примерно 15 ядерным пробегам для протонов. Отсюда следует, что вероятность достичь поверхности Земли, не испытав столкновений, для первичной частицы ничтожно мала. Поэтому на поверхности Земли космические лучи обнаруживаются лишь по слабым эффектам ионизации, создаваемой вторичными частицами.

Космические лучи у Земли

Космические лучи галактического и метагалактического происхождения занимают огромный диапазон энергий, охватывающий примерно 15 порядков величины, – от 10 6 до 10 21 эВ. Энергии солнечных космических лучей, особенно во время мощных солнечных вспышек, могут достигать больших значений, однако характерная величина их энергии обычно не превосходит 10 9 эВ. Поэтому разделение космических лучей на галактические и солнечные вполне оправданно, поскольку как характеристики, так и источники солнечных и галактических космических лучей совершенно различны.

При энергиях ниже 10 ГэВ/нуклон интенсивность галактических космических лучей, измеряемая вблизи Земли, зависит от уровня солнечной активности (точнее от меняющегося в течение солнечных циклов межпланетного магнитного поля). В области более высоких энергий интенсивность галактических космических лучей практически постоянна во времени. Согласно современным представлениям, собственно галактические космические лучи заканчиваются в области энергий между 10 17 и 10 18 эВ. Происхождение космических лучей предельно высоких энергий, скорее всего, с Галактикой не связано.

Существует четыре способа описания спектров различных компонент космических лучей. 1. Число частиц на единицу жёсткости. Распространение (и, вероятно, также ускорение) частиц в космических магнитных полях зависит от ларморовского радиуса r L или магнитной жёсткости частицы R , которая представляет собой произведение ларморовского радиуса на индукцию магнитного поля B : R = r L B = pc /(Ze ), где р и Z – импульс и заряд частицы (в единицах заряда электрона е ), с – скорость света. 2. Число частиц на единицу энергии на один нуклон. Фрагментация ядер, распространяющихся сквозь межзвёздный газ, зависит от энергии на нуклон, поскольку её количество приблизительно сохраняется, когда ядро разрушается при взаимодействии с газом. 3. Число нуклонов на единицу энергии на один нуклон. Генерация вторичных частиц в атмосфере зависит от интенсивности нуклонов на единицу энергии на один нуклон, почти независимо от того, являются ли падающие на атмосферу нуклоны свободными протонами или связаны в ядрах. 4. Число частиц на единицу энергии на одно ядро. Эксперименты по широким атмосферным ливням , которые используют атмосферу как калориметр, в общем случае измеряют величину, которая связана с полной энергией в расчёте на 1 частицу. Единицы измерения дифференциальной интенсивности частиц I имеют вид (см –2 с –1 ср –1 E –1), где энергия E представлена в единицах одной из четырёх переменных, перечисленных выше.

Наблюдаемый дифференциальный энергетический спектр космических лучей в области энергий выше 10 11 эВ показан на рис. 1. Спектр описывается степенным законом в очень широком диапазоне энергий – от 10 11 до 10 20 эВ с небольшим изменением наклона ок. 3·10 15 эВ (излом, иногда называемый «коленом», knee) и ок. 10 19 эВ («лодыжка», ankle). Интегральный поток космических лучей выше «лодыжки» равен приблизительно 1 частице/(км 2 ·год).

Таблица 1. Относительное содержание различных ядер в галактических и солнечных космических лучах, на Солнце и других звёздах (содержание ядер кислорода принято равным 1,0)

Ядро Солнечные космические лучи Солнце Звёзды Галактические космические лучи
1 H 4600 * 1445 925 685
2 He 70 * 91 150 48
3 Li ? <10 – 5 <10 – 5 0,3
4 Be – 5 B 0,02 <10 – 5 <10 – 5 0,8
6 C 0,54 * 0,60 0,26 1,8
7 N 0,20 0,10 0,20 <0,8
8 O 1,0 1,0 1,0 1,0
9 F <0,03 10 – 3 <10 – 4 <0,1
10 Ne 0,16 * 0,054 0,36 0,30
11 Na ? 0,002 0,002 0,19
12 Mg 0,18 * 0,05 0,04 0,32
13 Al ? 0,002 0,004 0,06
14 Si 0,13 * 0,065 0,045 0,12
15 P – 21 Sc 0,06 0,032 0,024 0,13
16 S – 20 Ca 0,04 * 0,028 0,02 0,11
22 Ti – 28 Ni 0,02 0,006 0,033 0,28
26 Fe 0,15 * 0,05 0,06 0,14

* Данные наблюдений для интервала энергий 1–20 МэВ/нуклон, остальные данные в этой колонке относятся к энергиям ≥ 40 МэВ/нуклон. Погрешность большинства значений в таблице от 10 до 50%.

Интенсивность первичных нуклонов в диапазоне энергий от нескольких ГэВ до 10 ТэВ или немного выше можно приближённо описать формулой I N (E )≈1,8E –α нуклон/(см 2 ∙с∙ср∙ГэВ), где Е – энергия на нуклон (включая энергию покоя), α ≈ (γ + 1) = 2,7 – показатель дифференциального спектра, γ – интегральный спектральный индекс. Ок. 79% первичных нуклонов составляют свободные протоны, ок. 70% остальных частиц – это нуклоны, связанные в ядрах гелия. Фракции (доли) первичных ядер являются почти постоянными в указанном диапазоне энергий (возможно, с небольшими вариациями). На рис. 2 приведён спектр галактических космических лучей в области энергий выше ≈400 МэВ/нуклон. Представлены главные компоненты космических лучей как функции энергии на нуклон для определённой эпохи цикла солнечной активности. Величина J (E ) представляет собой количество частиц, имеющих энергию в диапазоне от E до E + δE и проходящих через единичную поверхность в единицу времени в единице телесного угла в направлении, перпендикулярном поверхности.

Таблица 2. Интенсивность галактических космических лучей с полной энергией E ≥ 2,5 ГэВ/нуклон за пределами магнитосферы Земли вблизи минимума солнечной активности и параметры дифференциального спектра K A и γ для протонов (ядро H), α-частиц (ядро He) и различных групп ядер

Ядро Заряд ядра Z Интенсивность I (Z ) при E ≥ 2,5 ГэВ/нуклон, м –2 ∙с –1 ∙ср –1 Показатель дифференци-ального спектра γ Константа спектра K A Интервал E , ГэВ/нуклон
Н 1 1300 2,4±0,1 4800 4,7–16
Не 2 88 2,5±0,2 360 2,5–800
Li, Be, B 3–5 1,9
C, N, O, F 6–9 5,6 2,6±0,1 25±5 2,4–8,0
Ne, Na, Mg, Al, Si, Р, S, ... ≥10 2,5 2,6±0,15 12±2 2,4–8,0
Ca, Ti, Ni, Fe, ... ≥20 0,7

Относительное содержание различных ядер в галактических и солнечных космических лучах, а также (для сравнения) на Солнце и др. звёздах приведено в таблице 1 для области сравнительно невысоких энергий (1–20 МэВ/нуклон) и энергий ≥ 40 МэВ/нуклон. В таблице 2 суммированы данные об интенсивности частиц галактических космических лучей более высоких энергий (≈2,5 ГэВ/нуклон). Таблица 3 содержит распределение ядер космических лучей с энергией ≈10,6 ГэВ/нуклон.

Таблица 3. Относительная распространённость F ядер космических лучей при энергии 10,6 ГэВ/нуклон (cодержание ядер кислорода принято равным 1,0)

Заряд ядра Z Элемент F
1 H 730
2 He 34
3–5 Li–B 0,4
6–8 C–O 2,2
9–10 F–Ne 0,3
11–12 Na–Mg 0,22
13–14 Al–Si 0,19
15–16 P–S 0,03
17–18 Cl–Ar 0,01
19–20 K–Ca 0,02
21–25 Sc–Mn 0,05
26–28 Fe–Ni 0,12

Методы изучения космических лучей

Поскольку по своим энергиям частицы космических лучей различаются в 10 15 раз, то для их изучения приходится применять весьма разнообразные методы и приборы (рис. 3, слева). При этом широко используется аппаратура, установленная на спутниках и космических ракетах. В атмосфере Земли измерения проводятся с помощью малых шаров-зондов и больших высотных аэростатов, на её поверхности – с помощью наземных установок. Некоторые из них достигают размеров в сотни квадратных километров и расположены либо высоко в горах, либо глубоко под землёй, либо на больших глубинах в океане, куда проникают только вторичные частицы высоких энергий, например мюоны (рис. 3, слева). Непрерывную регистрацию космических лучей на поверхности Земли уже более 60 лет осуществляет мировая сеть станций для изучения вариаций космических лучей – стандартные нейтронные мониторы и мюонные телескопы. Ценную информацию о галактических и солнечных космических лучах дают наблюдения на больших установках типа Баксанского комплекса для изучения широких атмосферных ливней .

Ныне основными типами детекторов, которые используются при изучении космических лучей, являются фотоэмульсии и рентгеновские плёнки, ионизационные камеры, газоразрядные счётчики, счётчики нейтронов, черенковские и сцинтилляционные счётчики, твердотельные полупроводниковые детекторы, искровые и дрейфовые камеры.

Ядерно-физические исследования космических лучей осуществляются в основном при помощи счётчиковых установок большой площади для регистрации широких атмосферных ливней, открытых в 1938 (П. Оже ). Ливни содержат огромное количество вторичных частиц, которые образуются при вторжении одной первичной частицы с энергией ≥ 10 15 эВ. Основная цель таких наблюдений – изучение характеристик элементарного акта ядерного взаимодействия при высоких энергиях. Наряду с этим, они дают информацию об энергетическом спектре космических лучей при энергиях 10 15 –10 20 эВ, что очень важно для поиска источников и механизмов ускорения космических лучей.

Поток частиц с E ≈10 20 эВ, изучаемый методами широких атмосферных ливней, очень мал. Например, на 1 м 2 на границе атмосферы за 1 млн. лет падает лишь одна частица с E≈ 10 19 эВ. Для регистрации столь малых потоков необходимо иметь большие площади с установленными на них детекторами, чтобы зарегистрировать достаточное количество событий за разумное время. На 2016 на гигантских установках по регистрации широких атмосферных ливней различными группами учёных было зарегистрировано, по разным оценкам, от 10 до 20 событий, порождённых частицами с максимальными энергиями до 3∙10 20 эВ.

Наблюдения в космофизическом аспекте проводятся весьма разнообразными методами в зависимости от энергии частиц. Вариации космических лучей с энергиями 10 9 –10 12 эВ изучаются по данным мировой сети нейтронных мониторов, мюонных телескопов и др. детекторов. Однако наземные установки из-за атмосферного поглощения нечувствительны к частицам с энергией< 500 МэВ. Поэтому приборы для регистрации таких частиц поднимают на шарах-зондах в стратосферу до высот 30–35 км (рис. 3).

Внеатмосферные измерения потока космических лучей с энергией 1–500 МэВ осуществляют при помощи геофизических ракет, ИСЗ и других космических аппаратов (космических зондов). Прямые наблюдения космических лучей в межпланетном пространстве, начатые в 1960-х гг. на орбите Земли (вблизи плоскости эклиптики), с 1994 проводятся над полюсами Солнца (КА «Улисс», «Ulysses»). Космические зонды «Вояджер-1» («Voyager 1») и «Вояджер-2» («Voyager 2»), запущенные в 1977, уже достигли пределов Солнечной системы. Так, первый из этих КА пересёк границу гелиосферы в 2004, второй – в 2007. Это произошло соответственно на расстояниях 94 а.е. и 84 а.е. от Солнца. На 2016 оба аппарата, по-видимому, движутся в облаке межзвёздной пыли, в которое погружена Солнечная система.

Ряд ценных результатов дал метод космогенных изотопов. Они образуются при взаимодействии космических лучей с метеоритами и космической пылью, с поверхностью Луны и др. планет, с атмосферой или веществом Земли. Космогенные изотопы несут информацию о вариациях космических лучей в прошлом и о солнечно-земных связях. Например, по содержанию радиоуглерода 14 С в годичных кольцах деревьев (радиоуглеродный метод датирования ) можно изучать вариации интенсивности космических лучей на протяжении нескольких последних тысяч лет. По другим долгоживущим изотопам (10 Be, 26 Al, 53 Mn и др.), содержащимся в метеоритах, лунном грунте, в глубоководных морских отложениях, можно восстановить картину изменений интенсивности космических лучей за прошедшие миллионы лет.

С развитием космической техники и радиохимических методов анализа стало возможным изучение характеристик космических лучей по их трекам (следам) в веществе. Треки образуются ядрами космических лучей в метеоритах, лунном веществе, в специальных образцах-мишенях, экспонируемых на ИСЗ и возвращаемых на Землю, в шлемах космонавтов, работавших в открытом космосе, и т. п. Используется также косвенный метод изучения космических лучей по эффектам ионизации, вызываемым ими в нижней части ионосферы, особенно в полярных широтах (например, эффект усиления поглощения коротких радиоволн). Кроме эффектов ионизации, космические лучи вызывают также образование оксидов азота в атмосфере. Вместе с осадками (дождь и снег) оксиды осаждаются и в течение многих лет накапливаются во льдах Гренландии и Антарктиды. По их содержанию в колонках льда (т. н. нитратный метод) можно судить об интенсивности космических лучей в прошлом (десятки и сотни лет назад). Эти эффекты существенны главным образом при вторжении в атмосферу солнечных космических лучей.

Происхождение космических лучей

Из-за высокой изотропии космических лучей наблюдения у Земли не позволяют установить, где они образуются и как распределены во Вселенной. На эти вопросы впервые ответила радиоастрономия в связи с открытием космического синхротронного излучения в диапазоне частот 10 7 –10 9 Гц. Это излучение создаётся электронами очень высокой энергии (10 9 –10 10 эВ) при их движении в магнитных полях Галактики. Такие электроны, являющиеся одной из компонент космических лучей, занимают протяжённую область, охватывающую всю Галактику и называемую галактическим гало. В межзвёздных магнитных полях электроны движутся подобно другим заряженным частицам высокой энергии – протонам и более тяжёлым ядрам. Разница состоит лишь в том, что благодаря малой массе электроны, в отличие от более тяжёлых частиц, интенсивно излучают радиоволны и тем самым обнаруживают себя в удалённых частях Галактики, являясь индикатором космических лучей.

В 1966 Г. Т. Зацепин и В. А. Кузьмин (СССР) и К. Грейзен (США) высказали предположение, что спектр космических лучей при энергиях выше 3·10 19 эВ должен «обрезаться» (резко загибаться) из-за взаимодействия высокоэнергичных частиц с реликтовым излучением (т. н. GZK-эффект). Регистрация нескольких событий с энергией E ≈10 20 эВ может быть объяснена, если предположить, что источники этих частиц удалены от нас на расстояния не более 50 Мпк. В этом случае взаимодействий космических лучей с фотонами реликтового излучения практически не происходит из-за малого количества фотонов на пути частицы от источника к наблюдателю. Первые (предварительные) данные, полученные в 2007 в рамках большого международного «Проекта Оже», по-видимому, впервые указывают на существование GZK-эффекта при E > 3·10 19 эВ. В свою очередь, это является аргументом в пользу метагалактического происхождения космических лучей с энергией более 10 20 эВ, что значительно выше обрезания спектра за счёт GZK-эффекта. Для разрешения парадокса GZK высказываются различные идеи. Одна из гипотез связана с возможным нарушением лоренцевской инвариантности при сверхвысоких энергиях, в рамках которой нейтральные и заряженные π-мезоны могут быть стабильными частицами при энергиях выше 10 19 эВ и входить в состав первичных космических лучей.

В нач. 1970-х гг. изучение галактических космических лучей малых энергий, проводимое на космических аппаратах, привело к открытию аномальной компоненты космических лучей. Её составляют не полностью ионизованные атомы He, C, N, O, Ne и Ar. Аномальность проявляется в том, что в области энергий от нескольких единиц до нескольких десятков МэВ/нуклон спектр частиц существенно отличается от спектра галактических космических лучей (рис. 4). Наблюдается возрастание потока частиц, связанное, как полагают, с ускорением ионов на ударной волне на границе гелиомагнитосферы и последующей диффузией этих частиц во внутренние районы гелиосферы . Кроме того, распространённость элементов аномальных космических лучей значительно отличается от соответствующих величин для галактических космических лучей.

С другой стороны, по данным на июнь 2008, полученным с борта КА «Вояджер-1», было отмечено увеличение потока космических лучей сравнительно невысоких энергий (единицы – десятки МэВ, рис. 5). Эти первые сведения о космических лучах, полученные непосредственно из межзвёздной среды, поднимают новые вопросы об источниках и природе (механизмах генерации) аномальной компоненты космических лучей.

Механизмы ускорения космических лучей

Завершённая теория ускорения космических частиц для всего энергетического диапазона, в котором они наблюдаются, пока не создана. Даже в отношении галактических космических лучей предложены лишь модели, объясняющие наиболее существенные факты. К таковым следует в первую очередь отнести величину плотности энергии космических лучей (≈ 1 эВ/см 3), а также степенную форму их энергетического спектра, не претерпевающую каких-либо резких изменений вплоть до энергии ≈ 3·10 15 эВ, где показатель дифференциального спектра всех частиц меняется с –2,7 на –3,1.

Ныне основным источником галактических космических лучей считаются взрывы сверхновых звёзд . Требования к энергетической мощности источников, генерирующих космические лучи, весьма высоки (мощность генерации космических лучей должна быть порядка 3·10 33 Вт), так что обычные звёзды Галактики не могут им удовлетворять. Однако такая мощность может быть получена от взрывов сверхновых звёзд (В. Л. Гинзбург , С. И. Сыроватский, 1963). Если во время взрыва выделяется энергия порядка 10 44 Дж, а взрывы происходят с частотой 1 раз в 30–100 лет, то их суммарная мощность составляет порядка 10 35 Вт, и для обеспечения необходимой мощности космических лучей достаточно лишь нескольких процентов энергии вспышки сверхновой.

При этом, однако, остаётся вопрос о формировании наблюдаемого спектра галактических космических лучей. Проблема состоит в том, что макроскопическую энергию намагниченной плазмы (расширяющейся оболочки сверхновой) необходимо передать индивидуальным заряженным частицам, обеспечив при этом такое распределение энергии, которое существенным образом отличается от теплового. Наиболее вероятным механизмом ускорения галактических космических лучей до энергии порядка 10 15 эВ (а возможно, и выше) представляется следующий. Движение сброшенной при взрыве оболочки порождает в окружающей межзвёздной среде ударную волну (рис. 6). Диффузионное распространение заряженных частиц, захваченных в процесс ускорения, позволяет им многократно пересекать фронт ударной волны (Г. Ф. Крымский , 1977). Каждая пара последовательных пересечений увеличивает энергию частицы пропорционально уже достигнутой энергии (механизм, предложенный Э. Ферми , 1949), что и приводит к ускорению частиц. С увеличением числа пересечений фронта ударной волны растёт и вероятность покинуть область ускорения, так что по мере роста энергии количество частиц падает примерно по степенному закону, причём ускорение оказывается весьма эффективным, а спектр ускоренных частиц – весьма жёстким: µE –2 .

При некоторых модельных допущениях предложенная схема даёт величину максимальной энергии E макс ~ 10 17 Z эВ, где Z – заряд ускоренного ядра. Расчётный спектр космических лучей вплоть до максимально достижимой энергии получается весьма жёстким (µЕ –2). Чтобы компенсировать различие между теоретическим (–2) и экспериментальным (–2,7) показателями спектра, требуется значительное смягчение спектра в процессе распространения космических лучей. Такое смягчение может быть достигнуто за счёт энергетической зависимости коэффициента диффузии частиц при их движении от источников к Земле.

Среди других механизмов ускорения обсуждается, в частности, ускорение на стоячей ударной волне при вращении нейтронной звезды с мощным магнитным полем (~10 12 Гс). Максимальная энергия частиц при этом может достигать (10 17 –10 18)Z эВ, а время эффективного ускорения – 10 лет. Ускорение частиц возможно также в ударных волнах, образующихся при столкновении галактик. Такое событие может осуществляться с частотой примерно 1 раз в 5·10 8 лет; максимально достижимая при этом энергия оценивается как 3·10 19 Z эВ. К аналогичной оценке приводит и процесс ускорения ударными волнами в струях, генерируемых активными ядрами галактик. Примерно такие же оценки дают модели, связанные с рассмотрением ускорения ударными волнами, вызванными аккрецией вещества в галактических скоплениях. Наибольшие оценки (до энергий порядка 10 21 эВ) можно получить в рамках модели космологического происхождения гамма-всплесков. Обсуждаются также экзотические сценарии, в которых обычного ускорения частиц не требуется вовсе. В подобных сценариях космические лучи возникают в результате распадов или аннигиляции т. н. топологических дефектов (космические струны, монополи и т. д.), возникших в первые мгновения расширения Вселенной.

Проблемы и перспективы

Изучение космических лучей даёт ценные сведения об электромагнитных полях в различных областях космического пространства. Информация, «записанная» и «переносимая» частицами космических лучей на их пути к Земле, расшифровывается при исследовании вариаций космических лучей – пространственно-временных изменений потока космических лучей под влиянием динамических, электромагнитных и плазменных процессов в межзвёздном пространстве, внутри гелиосферы (в потоке солнечного ветра ) и в окрестности Земли (в земной магнитосфере и атмосфере).

С другой стороны, в качестве естественного источника частиц высокой энергии космические лучи играют незаменимую роль при изучении строения вещества и взаимодействий между элементарными частицами. Энергии отдельных частиц космических лучей столь велики, что они ещё долго будут оставаться вне конкуренции по сравнению с частицами, ускоренными самыми мощными лабораторными ускорителями. Так, максимальная энергия частиц (протонов), полученных в большинстве современных наземных ускорителей, в основном не превышает 10 12 эВ. Лишь 3.6.2015 в ЦЕРНе на Большом адронном коллайдере впервые удалось ускорить протоны до энергий 1,3∙10 13 эВ (при проектной максимальной энергии 1,4∙10 13 эВ).

Наблюдения в различных космических масштабах (Галактика, Солнце, магнитосфера Земли и т. д.) показывают, что ускорение частиц происходит в космической плазме всюду, где имеются достаточно интенсивные неоднородные движения и магнитные поля. Однако в большом количестве и до очень высоких энергий частицы могут ускоряться только там, где плазме сообщается очень большая кинетическая энергия. Это как раз и происходит в таких грандиозных космических процессах, как вспышки сверхновых звёзд, активность радиогалактик и квазаров.

В понимании подобных процессов за последние десятилетия был достигнут значительный прогресс, однако остаётся и много вопросов. По-прежнему особенно острая ситуация в области высоких и экстремально высоких энергий, где качество информации (статистика данных) всё ещё не позволяет сделать однозначные выводы об источниках космических лучей и механизмах их ускорения. Можно надеяться, что эксперименты на Большом адронном коллайдере позволят получить информацию относительно адронных взаимодействий вплоть до энергии ~10 17 эВ и значительно сузить существующую ныне неопределённость, возникающую при экстраполяции феноменологических моделей адронных взаимодействий в область сверхвысоких энергий. Установки по изучению широких атмосферных ливней следующего поколения должны обеспечить прецизионные исследования энергетического спектра и состава космических лучей в области энергий 10 17 –10 19 эВ, где, по-видимому, происходит переход от галактических космических лучей к космическим лучам экстрагалактического происхождения.

Наряду с огромной ролью космических лучей в астрофизических процессах, важно их значение для изучения далёкого прошлого Земли (изменений климата, эволюции биосферы и т. д.), а также для решения некоторых практических задач (например, мониторинг и прогноз космической погоды и обеспечение радиационной безопасности космонавтов).

В нач. 21 в. всё большее внимание привлекает возможная роль космических лучей в атмосферных и климатических процессах. Хотя плотность энергии космических лучей мала по сравнению с огромной энергетикой различных атмосферных процессов, в некоторых из них космические лучи, по-видимому, играют решающую роль. В земной атмосфере на высотах менее 30 км космические лучи служат главным источником образования ионов. От плотности ионов во многом зависят процессы конденсации и образования водяных капель. Так, во время понижений интенсивности галактических космических лучей в области возмущений солнечного ветра в межпланетном пространстве, вызванных солнечными вспышками (т. н. эффект Форбуша), уменьшается облачность и уровень выпадения осадков. После вспышек на Солнце и прихода солнечных космических лучей на Землю величина облачности и уровень осадков увеличиваются. Эти изменения как в первом, так и во втором случае составляют не менее 10%. После вторжения в полярные области Земли больших потоков ускоренных частиц от Солнца наблюдается изменение температуры в верхних слоях атмосферы. Космические лучи активно участвуют также в образовании грозового электричества. В нач. 21 в. усиленно изучается влияние космических лучей на концентрацию озона и на другие процессы в атмосфере.

Все перечисленные эффекты детально исследуются в рамках более общей проблемы солнечно-земных связей . Особый интерес представляет разработка механизмов этих связей. В частности, это относится к триггерному механизму, при котором энергетически слабое первичное воздействие на неустойчивую систему приводит к многократному усилению вторичных эффектов, например к развитию мощного циклона.

Космическими лучами принято называть совокупность потоков атомных ядер высокой энергии, в основном протонов, падающих на Землю из мирового пространства, и образуемое ими в земной атмосфере вторичное излучение, в котором встречаются все известные в настоящее время элементарные частицы.

§ 54. ОТКРЫТИЕ КОСМИЧЕСКИХ ЛУЧЕЙ

Исследования космических лучей начались в первые годы нашего столетия в связи с изучением причины непрерывной утечки заряда электроскопов. Герметически закрытый электроскоп разряжался даже при самой совершенной изоляции.

В 1910-1925 гг. различными опытами на воздушных шарах и под землей было показано, что причиной этого является некоторое сильно проникающее излучение, которое зарождается где-то вне Земли и интенсивность которого падает по мере проникновения его в атмосферу. Оно и вызывает ионизацию воздуха в ионизационной камере и связанную с этим разрядку электроскопов. Милликен назвал этот поток излучения космическими лучами.

В дальнейших опытах было установлено изменение интенсивности космического излучения (плотности потока частиц) в зависимости от высоты наблюдения (рис. 105).

Рис. 105. Зависимость числа космических частиц от высоты в относительных единицах)

Интенсивность космических лучей сравнительно быстро растет примерно до высоты над уровнем моря, затем темп роста

замедляется и на высоте интенсивность достигает максимального значения. При подъеме на большие высоты наблюдается ее уменьшение, а начиная с высоты интенсивность космических лучей остается постоянной. В результате многочисленных экспериментов установлено, что космические лучи приходят на поверхность Земли со всех сторон равномерно и во Вселенной нет места, которое можно было бы назвать источником космических лучей.

При исследовании космических лучей было сделано много принципиально важных открытий. Так, в 1932 г. Андерсоном был открыт в космических лучах позитрон, предсказанный теорией Дирака. В 1937 г. Андерсоном и Нидермайером были открыты -мезоны и указан тип их распада. В 1947 г. Пауэллом были открыты -мезоны, которые согласно теории Юкава были необходимы для объяснения ядерных сил. В 1955 г. было установлено наличие в космических лучах К-мезонов, а также тяжелых нейтральных частиц с массой, превышающей массу протона - гиперонов. Исследования космических лучей привели к необходимости введения квантовой характеристики, названной странностью. Опыты с космическими лучами также поставили вопрос о возможности несохранения четности. В космических лучах впервые были обнаружены процессы множественной генерации частиц в одном акте столкновения.

Исследования последних лет позволили определить величину эффективного сечения взаимодействия нуклонов высокой энергии с ядрами. Так как в составе космических лучей имеются частицы с энергией, достигающей то космические лучи являются единственным источником информации о взаимодействии частиц столь высокой энергии.

Использование при изучении космических лучей ракет и искусственных спутников привело к новым открытиям - обнаружению радиационных поясов Земли. Возможность исследовать первичные космическое излучение за пределами земной атмосферы и создало новые методы изучения галактического и межгалактического пространства. Таким образом, исследования космических лучей, перейдя из области геофизики в область ядерной физики и физики элементарных частиц, сейчас теснейшим образом объединяют изучение строения микромира с проблемами астрофизики.

В связи с созданием ускорителей на энергии в десятки центр тяжести ядерного направления в физике космических лучей переместился в область сверхвысоких энергий, где продолжаются исследования ядерных взаимодействий, структуры нуклонов и других элементарных частиц. Кроме этого возникло самостоятельное направление - изучение космических лучей в геофизическом и астрофизическом аспектах. Предметом исследований здесь являются: первичные космические лучи у Земли (химический состав, энергетический спектр, пространственное распределение); солнечные лучи (их генерация, движение к Земле и влияние на земную

ионосферу); влияние на космические лучи межпланетной и межзвездной среды и магнитных полей; радиационные пояса вблизи Земли и других планет; происхождение космических лучей. Важнейшим средством изучения этих проблем является детальное исследование наблюдаемых на Земле и вблизи от нее разнообразных вариаций в потоке космических лучей.

К. л. напоминают сильно разреженный релятивистский газ, частицы к-рого практически не взаимодействуют друг с другом, но испытывают редкие столкновения с веществом межзвёздной и межпланетной сред и воздействие космич. магн. полей. В составе К. л. преобладают протоны, имеются также электроны, ядра гелия и более тяжёлых элементов (вплоть до ядер элементов с 30). Электронов в К. л. в сотни раз меньше, чем протонов (в одном и том же диапазоне энергий). Частицы К. л. обладают огромными кинетич. энергиями (вплоть до эВ). Хотя суммарный поток К. л. у Земли невелик [всего 1 частица/(см 2 с)], плотность их энергии (ок. 1 эВ/см 3) сравнима (в пределах нашей Галактики) с плотностью энергии суммарного эл.-магн. излучения звёзд, энергии теплового движения межзвёздного газа и кинетич. энергии его турбулентных движений, а также с плотностью энергии магнитного поля Галактики. Отсюда следует, что К. л. должны играть большую роль в процессах, идущих в межзвёздном пространстве.

Др. важная особенность К. л. - нетепловое происхождение их энергии. Действительно, даже при темп-ре ~ 10 9 К, по-видимому, близкой к максимальной для звёздных недр, средняя энергия теплового движения частиц эВ. Осн. же количество частиц К. л., наблюдаемых у Земли, имеет энергии от 10 8 эВ и выше. Это означает, что К. л. приобретают энергию в специфических астрофизич. процессах эл.-магн. и плазменной природы.

Изучение К. л. даёт ценные сведения об эл.-магн. полях в различных областях космического пространства. Информация, "записанная" и "переносимая" частицами К. л. на их пути к Земле, расшифровывается при исследовании - пространственно-временных изменений потока К. л. под влиянием динамических эл.-магн. и плазменных процессов в межзвёздном и околоземном пространстве.

С другой стороны, в качестве естественного источника частиц высокой энергии К. л. играют незаменимую роль при изучении строения вещества и взаимодействий между элементарными частицами. Энергии отдельных частиц К. л. столь велики, что они ещё долго будут оставаться вне конкуренции по сравнению с частицами, ускоренными (до энергий ~ 10 12 эВ) самыми мощными лабораторными ускорителями.

2. Методы изучения космических лучей

Вторгаясь в атмосферу Земли, первичные К. л. разрушают ядра наиболее распространённых в атмосфере элементов - азота и кислорода - и порождают каскадный процесс (рис. 1), в к-ром участвуют все известные в настоящее время элементарные частицы. Принято характеризовать путь, пройденный частицей К. л. в атмосфере до столкновения, количеством вещества в граммах, заключённого в столбе сечением 1 см 2 , т.е. выражать пробег частиц в г/см 2 вещества атмосферы. Это значит, что после прохождения толщи атмосферы х (в г/см 2) в пучке протонов с первоначальной интенсивностью I 0 количество протонов, не испытавших столкновения, будет равно , где - ср. пробег частицы. Для протонов, к-рые составляют большинство первичных К. л., в воздухе равен примерно 70 г/см 2 ; для ядер гелия 25 г/см 2 , для более тяжёлых ядер ещё меньше. Первое столкновение (70 г/см 2) с атмосферными частицами протоны испытывают в среднем на высоте 20 км. Толщина атмосферы на уровне моря эквивалентна 1030 г/см 2 , т.е. соответствует примерно 15 ядерным пробегам для протонов. Отсюда следует, что вероятность достичь поверхности Земли, не испытав столкновений, для первичной частицы ничтожно мала. Поэтому на поверхности Земли К. л. обнаруживаются лишь по слабым эффектам ионизации, создаваемой вторичными частицами.

В начале 20 в. в опытах с электроскопами и ионизац. камерами была обнаружена постоянная остаточная ионизация газов, вызываемая каким-то очень проникающим излучением. В отличие от излучения радиоактивных веществ окружающей среды, проникающее излучение не могли задержать даже толстые слои свинца. Внеземная природа обнаруженного проникающего излучения была установлена в 1912-14 гг. австр. физиком В. Гессом, нем. учёным В. Кольхёрстером и др. физиками, поднимавшимися с ионизац. камерами на воздушных шарах. Было найдено, что с увеличением расстояния от поверхности Земли ионизация, вызываемая К. л., растёт, напр. на высоте 4800 м - вчетверо, на высоте 8400 м - в 10 раз. Внеземное происхождение К. л. окончательно доказал Р. Милликен (США), осуществивший в 1923-26 гг. серию опытов по исследованию поглощения К. л. атмосферой (именно он ввёл термин "К. л.").

Природа К. л. вплоть до 40-х гг. оставалась неясной. В течение этого времени интенсивно развивалось ядерное направление - изучение взаимодействия К. л. с веществом, образования вторичных частиц и их поглощения в атмосфере. Эти исследования, проводившиеся при помощи счётчиковых телескопов, камер Вильсона и ядерных фотоэмульсий (поднимаемых на шарах-зондах в стратосферу), привели, в частности, к открытию новых элементарных частиц - позитрона (1932 г.), мюона (1937 г.), пи-мезонов (1947 г.).

Систематич. исследования влияния геомагн. поля на интенсивность и направление прихода первичных К. л. показали, что подавляющее большинство частиц К. л. имеет положит. заряд. С этим связана восточно-западная асимметрия К. л.: из-за отклонения заряженных частиц в магн. поле Земли с запада приходит больше частиц, чем с востока.

Применение фотоэмульсий позволило в 1948 г. установить ядерный состав первичных К. л.: были обнаружены следы ядер тяжёлых элементов вплоть до железа (первичные электроны в составе К. л. были впервые зарегистрированы в стратосферных измерениях лишь в 1961 г.). С конца 40-х гг. на передний план постепенно выдвинулись проблемы происхождения и временных вариаций К. л. (космофизич. аспект).

Ядерно-физич. исследования К. л. осуществляются в основном при помощи счётчиковых установок большой площади, предназначенных для регистрации т.н. широких атмосферных ливней из вторичных частиц, к-рые образуются при вторжении одной первичной частицы с энергией эВ. Осн. цель таких наблюдений - изучение характеристик элементарного акта ядерного взаимодействия при высоких энергиях. Наряду с этим они дают информацию об энергетич. спектре К. л. при эВ, что очень важно для поиска источников и механизмов ускорения К. л.

Наблюдения К. л. в космофизич. аспекте проводятся весьма разнообразными методами - в зависимости от энергии частиц. Вариации К. л. с эВ изучаются по данным мировой сети нейтронных мониторов (нейтронный компонент К. л.), счётчиковых телескопов (мюонный компонент К. л.) и др. детекторов. Однако наземные установки из-за атмосферного поглощения нечувствительны к частицам с МэВ. Поэтому приборы для регистрации таких частиц поднимают на шарах-зондах в стратосферу до высот 30-35 км.

Внеатмосферные измерения потока К. л. 1-500 МэВ осуществляются при помощи геофизич. ракет, ИСЗ и др. КА. Прямые наблюдения К. л. в межпланетном пространстве осуществлены пока лишь вблизи плоскости эклиптики до расстояния ~ 10 а. е. от Солнца.

Ряд ценных результатов дал метод космогенных изотопов. Они образуются при взаимодействии К. л. с метеоритами и космич. пылью, с поверхностью Луны и др. планет, с атмосферой или веществом Земли. Космогенные изотопы несут информацию о вариациях К. л. в прошлом и о . По содержанию радиоуглерода 14 С в годичных кольцах деревьев можно, напр., изучать вариации интенсивности К. л. на протяжении неск. последних тысяч лет. По др. долгоживущим изотопам (10 Ве, 26 Al, 53 Mn и др.), содержащимся в метеоритах, лунном грунте, в глубоководных морских отложениях, можно восстановить картину изменений интенсивности К. л. за миллионы лет.

С развитием космич. техники и радио-химич. методов анализа стало возможным изучение характеристик К. л. по трекам (следам), создаваемым ядрами К. л. в метеоритах, лунном веществе, в спец. образцах-мишенях, экспонируемых на ИСЗ и возвращаемых на Землю, в шлемах космонавтов, работавших в открытом космосе, и т.п. Используется также косвенный метод изучения К. л. по эффектам ионизации, вызываемым ими в нижней части ионосферы, особенно в полярных широтах. Эти эффекты существенны гл. обр. при вторжении в земную атмосферу солнечных К. л.

3. Космические лучи у Земли

Табл. 1. Относительное содержание ядер в космических лучах, на Солнце и звездах (в среднем)

Элемент Солнечные К.л. Солнце (фотосфера) Звезды Галактические К.л.
1 H 4600* 1445 925 685
2 He (-частица) 70* 91 150 48
3 Li ? 0,3
4 Be- 5 B 0,02 0,8
6 C 0,54* 0,6 0,26 1,8
7 N 0,20 0,1 0,20 0,8
8 O** 1,0* 1,0 1,0 1,0
9 F 10 -3 0,1
10 Ne 0,16* 0,054 0,36 0,30
11 Na ? 0,002 0,002 0,19
12 Mg 0,18* 0,05 0,040 0,32
13 Al ? 0,002 0,004 0,06
14 Si 0,13* 0,065 0,045 0,12
15 P- 21 Sc 0,06 0,032 0,024 0,13
16 S- 20 Ca 0,04* 0,028 0,02 0,11
22 Ti- 28 Ni 0,02 0,006 0,033 0,28
26 Fe 0,15* 0,05 0,06 0,14

* Данные наблюдений для интервала =1-20 МэВ/нуклон, остальные цифры в этой графе относятся в основном к >40 МэВ/нуклон. Точность большинства значений в таблице в целом - от 10 до 50%. ** Обилие ядер кислорода принято за единицу.

Важнейшими характеристиками К. л. явл. их состав (распределение по массам и зарядам), энергетич. спектр (распределение по энергиям) и степень анизотропии (распределение по направлениям прихода). Относительное содержание ядер в К. л. приведено в табл.1. Из табл. 1 видно, что в составе К. л. галактич. происхождения гораздо больше лёгких ядер (Z = 3-5), чем в солнечных К. л. и в среднем в звёздах Галактики. Кроме того, в них присутствует значительно больше тяжёлых яде (20) по сравнению с их естеств распространённостью. Оба эти различи очень важны для выяснения вопрос о происхождении К. л.

Относительные числа частиц с различной массой в К. л. приведены в табл. 2.

Табл. 2. Состав и некоторые характеристики космических лучей с энергиями 2,5 ГэВ/нуклон

p протоны 1 1 1300 10000 10000 -частица ядра гелия 2 4 94 720 1600 L легкие ядра 3-5 10 2,0 15 10 -4 M средние ядра 6-9 14 6,7 52 14 H тяжелые ядра 10 31 2,0 15 6 VH очень тяжелые ядра 20 51 0,5 4 0,06 SH самые тяжелые ядра > 30 100 ~10 -4 ~10 -3 e электроны 1 1/1836 13 100 10000

Видно, что в потоке первичных К. л преобладают протоны, их более 90% от числа всех частиц. По отношенив к протонам -частицы составляют 7%, электроны ~ 1% и тяжёлые ядра - менее 1%. Эти цифры относятся к частицам с энергией 2,5 ГэВ/нуклон по измерениям у Земли в минимуме солнечной активности, когда наблюдаемые энергетич. спектр можно считать близким к немодулированному спектру К. л. в межзвёздном пространстве.

Интегральный энергетич. спектр К. л. align="absmiddle" width="145" height="22"> [частиц/(см 2 с)] отражает зависимость числа частиц I с энергией выше (I 0 - нормировочная константа, +1 - показатель спектра, знак минус указывает на то, что спектр имеет падающий характер, т.е. с увеличением интенсивность К. л. уменьшается). Часто пользуются также дифференциальным представлением спектра [частиц/(см 2 с МэВ)], которое отражает зависимость от числа частиц в расчёте на единичный интервал энергии (1 МэВ).

Дифференциальный спектр по сравнению с интегральным позволяет выявить более тонкие детали энергетич. распределения К. л. Это видно из рис. 2, где показан дифференциальный спектр К. л., наблюдаемый у Земли в интервале примерно от 10 6 до эВ. Частицы К. л. с энергиями, попадающими в этот интервал, подвержены влиянию солнечной активности, поэтому изучение энергетич. спектра К. л. в интервале 10 6 -10 11 эВ крайне важно для понимания проникновения К. л. из межзвёздного в межпланетное пространство, взаимодействия К. л. с межпланетным магн. полем (ММП) и , для интерпретации солнечно-земных связей.

До начала внеатмосферных и внемагнитосферных наблюдений К. л. вопрос о форме дифференциального спектра в области эВ казался довольно ясным: спектр у Земли имеет максимум вблизи 400 МэВ/нуклон; немодулированный спектр в межзвёздном пространстве должен иметь степенную форму; в межпланетном пространстве не должно быть галактич. К. л. малых энергий. Прямые измерения К. л. в интервале от 10 6 до 10 8 эВ показали, вопреки ожиданиям, что, начиная примерно с = 30 МэВ (и ниже), интенсивность К. л. снова растёт, т.е. был обнаружен характерный провал в спектре. Вероятно, провал - это результат усиленной модуляции К. л. в области эВ, где рассеяние частиц на неоднородностях ММП наиболее эффективно.

Установлено, что при эВ спектр К. л. уже не подвержен модуляции, а его наклон соответствует величине 2,7 вплоть до эВ. В этой точке спектр претерпевает излом (показатель увеличивается до =3,2-3,3). Имеются указания на то, что одновременно в составе К. л. увеличивается доля тяжёлых ядер. Однако данные о составе К. л. в этой области энергий пока весьма скудны. При align="absmiddle" width="118" height="17"> эВ спектр должен резко обрываться из-за ухода частиц в межгалактич. пространство и взаимодействия с фотонами . Поток частиц в области сверхвысоких энергий очень мал: на площадь 10 км 2 за год попадает в среднем не более одной частицы с эВ.

Для К. л. с эВ характерна высокая изотропия: с точностью до 0,1% интенсивность частиц по всем направлениям одинакова. При более высоких энергиях анизотропия растёт и в интервале эВ достигает неск. десятков % (рис. 3). Анизотропия ~ 0,1% с максимумом вблизи 19 ч звёздного времени соответствует преимущественному направлению движения К. л. вдоль силовых линий магн. поля галактич. спирального рукава, в к-ром находится Солнце. С ростом энергии частиц время максимума сдвигается к 13 ч звёздного времени, что соответствует наличию дрейфового потока К. л. с эВ из Галактики поперёк магнитных силовых линий.

4. Происхождение космических лучей

Из-за высокой изотропии К. л. наблюдения у Земли не позволяют установить, где они образуются и как распределены во Вселенной. На эти вопросы ответила радиоастрономия в связи с открытием космич. в диапазоне радиочастот Гц. Это излучение создаётся электронами очень высокой энергии при их движении в магн. поле Галактики.

Частота , на к-рой интенсивность радиоизлучения максимальна, связана с напряжённостью магн. поля Н и энергией электрона соотношением (Гц), где - питч-угол электрона (угол между вектором скорости электрона и вектором Н ). Магн. поле Галактики, измеренное неск. методами, имеет величину Э. В среднем, при Э и =0,5, эВ, т.е. радиоизлучающие электроны должны иметь такие же энергии, как и осн. масса К. л., наблюдаемых у Земли. Эти электроны, являющиеся одним из компонентов К. л., занимают протяжённую область, охватывающую всю Галактику и называемую галактич. гало. В межзвёздных магн. полях электроны движутся подобно др. заряженным частицам высокой энергии - протонам и более тяжёлым ядрам. Разница состоит лишь в том, что благодаря малой массе электроны, в отличие от более тяжёлых частиц, интенсивно излучают радиоволны и тем самым обнаруживают себя в удалённых частях Галактики, являясь индикатором К. л. вообще.

Кроме общего галактич. синхротронного радиоизлучения были обнаружены дискретные его источники: оболочки , ядро Галактики, . Естественно ожидать, что все эти объекты-источники К. л.

До начала 70-х гг. 20 в. многие исследователи считали, что К. л. с align="absmiddle" width="89" height="17"> эВ имеют в основном метагалактич. происхождение. При этом указывалось на отсутствие известных галактич. источников частиц с вплоть до 10 21 эВ и на трудности, связанные с проблемой их удержания в Галактике. В связи с открытием пульсаров (1967 г.) был рассмотрен ряд возможных механизмов ускорения до сверхвысоких энергий даже очень тяжёлых ядер. С другой стороны, полученные данные свидетельствуют о том, что наблюдаемые у Земли электроны образуются и накапливаются в Галактике. Нет никаких оснований думать, что протоны и более тяжёлые ядра ведут себя в этом отношении по-другому. Т.о., оправдывается теория галактич. происхождения К. л.

Косвенное подтверждение этой теории получено из данных о распределении по небесной сфере источников космич. гамма-излучения. Это излучение возникает за счёт распада -мезонов, к-рые образуются при столкновениях К. л. с частицами межзвёздного газа, а также вследствие тормозного излучения релятивистских электронов при их столкновениях с частицами межзвездного газа. Гамма-лучи не подвержены воздействию магн. полей, поэтому направление их прихода непосредственно указывает на источник. В отличие от наблюдаемого внутри Солнечной системы почти изотропного распределения К. л., распределение гамма-излучения по небу оказалось весьма неравномерным и подобным распределению сверхновых звёзд по галактич. долготе (рис. 4). Хорошее совпадение экспериментальных данных с ожидаемым распределением гамма-излучения по небесной сфере служит весомым доказательством того, что осн. источник К. л.- сверхновые звёзды.

Теория происхождения К. л. опирается не только на гипотезу о галактич. природе источников К. л., но и на представление о том, что К. л. длительное время удерживаются в Галактике, медленно вытекая в межгалактич. пространство. Двигаясь по прямой, К. л. покинули бы Галактику спустя неск. тысяч лет после момента генерации. В масштабах Галактики это время столь мало, что восполнить потери при такой быстрой утечке было бы невозможно. Однако в межзвёздном магн. поле с сильно запутанными силовыми линиями движение К. л. имеет сложный характер, напоминающий диффузию молекул в газе. В результате время утечки К. л. из Галактики оказывается в тысячи раз большим, чем при прямолинейном движении. Сказанное касается осн. части частиц К. л. (с эВ). Частицы с более высокой энергией, число к-рых очень мало, слабо отклоняются галактич. магн. полем и покидают Галактику сравнительно быстро. С этим, по-видимому, связан излом в спектре К. л. при эВ.

Наиболее надёжная оценка времени утечки К. л. из Галактики получается по данным об их составе. В К. л. в очень большом количестве (по сравнению со ср. распространённостью элементов) присутствуют лёгкие ядра (Li, Be, В). Они образуются из более тяжёлых ядер К. л. при столкновении последних с ядрами атомов межзвёздного газа (в основном водорода). Для того чтобы лёгкие ядра присутствовали в наблюдаемом количестве, К. л. за время их движения в Галактике должны проходить толщу межзвёздного вещества ок. 3 г/см. Согласно данным о распределении межзвёздного газа и остатков вспышек сверхновых звёзд, возраст К. л. не превышает 30 млн. лет.

В пользу сверхновых как осн. источника К. л., кроме данных радио-, рентгеновской и гамма-астрономии, говорят также оценки их энерговыделения при вспышках. Вспышки сверхновых сопровождаются выбросом огромных масс газа, образующих вокруг взрывающейся звезды большую ярко светящуюся и расширяющуюся оболочку (туманность). Полная энергия взрыва, к-рая уходит на излучение и кинетич. энергию разлёта газа, может достигать 10 51 -10 52 эрг. В нашей Галактике, по последним данным, сверхновые вспыхивают в среднем не реже одного раза в 100 лет. Если отнести энергию вспышки 10 51 эрг к этому промежутку времени, то ср. мощность вспышек составит ок. эрг/с. С другой стороны, для поддержания совр. плотности энергии К. л. ок. 1 эВ/см мощность источников К. л. при ср. времени жизни К. л. в Галактике лет должна быть не меньше 10 40 эрг/с. Отсюда следует, что для поддержания плотности энергии К. л. на совр. уровне достаточно, чтобы им было передано всего неск. % мощности вспышки сверхновой. Однако радиоастрономия позволяет непосредственно обнаружить только радиоизлучающие электроны. Поэтому ещё нельзя окончательно утверждать (хотя это представляется вполне естественным, особенно в свете достижений гамма-астрономии) , что при вспышках сверхновых генерируется также достаточное количество протонов и более тяжёлых ядер. В связи с этим не потеряли значения поиски и др. возможных источников К. л. Большой интерес в этом отношении представляют пульсары (где, по-видимому, возможно ускорение частиц до сверхвысоких энергий) и область галактич. ядра (где возможны взрывные процессы гораздо большей мощности, чем взрывы сверхновых). Однако мощность генерации К. л. галактич. ядром не превосходит, по-видимому, суммарной мощности их генерации при вспышках сверхновых. Кроме того, большая часть К. л., образованных в ядре, покинет диск Галактики раньше, чем достигнет окрестностей Солнца. Т.о., можно считать, что вспышки сверхновых явл. главным, хотя и не единственным источником К. л.

5. Механизмы ускорения космических лучей

Вопрос о возможных механизмах ускорения частиц до энергий ~ 10 21 эВ в деталях ещё далёк от окончат. решения. Однако в общих чертах природа процесса ускорения уже ясна. В обычном (неионизованном) газе перераспределение энергии между частицами происходит за счёт их столкновений между собой. В разреженной космич. плазме столкновения между заряженными частицами играют очень малую роль, а изменение энергии (ускорение или замедление) отдельной частицы обусловлено её взаимодействием с эл.-магн. полями, возникающими при движении всех окружающих её частиц плазмы.

В обычных условиях число частиц с энергией, заметно превышающей ср. энергию теплового движения частиц плазмы, ничтожно мало. Поэтому ускорение частиц должно начинаться практически от тепловых энергий. В космич. плазме (электрически нейтральной) не могут существовать сколько-нибудь значительные электростатич. поля, к-рые могли бы ускорять заряженные частицы за счёт разности потенциалов между точками поля. Однако в плазме могут возникать электрич. поля импульсного или индукционного характера. Импульсные электрич. поля появляются, напр., при разрыве нейтрального токового слоя, возникающего в области coприкосновения магн. полей противоположной полярности (см. ). Индукционное электрич. поле появляется при увеличении напряжённости магн. поля со временем (бетатронный эффект). Кроме импульсных полей начальная стадия ускорения может быть обусловлена взаимодействием ускоряемых частиц с электрическими полями плазменных волн в областях с интенсивным турбулентным движением плазмы.

В космосе, по-видимому, существует иерархия ускорительных механизмов, к-рые работают в различных комбинациях или в различной последовательности в зависимости от конкретных условий в области ускорения. Ускорение импульсным электрич. полем или плазменной турбулентностью способствует последующему ускорению индукционным (бетатронным) механизмом или мeханизмом Ферми.

Нек-рые особенности процесса ускорения частиц в космосе связаны с поведением плазмы в магн. поле. Космич. магн. поля существуют в больших объёмах пространства. Частица с зарядом Ze и импульсом p движется в магн. поле H по искривлённой траектории с мгновенным радиусом кривизны
,
где R = cp/Ze - магн. жёсткость частиц (измеряется в вольтах), - питч-угол частицы. Если поле мало изменяется на расстояниях, сравнимых с величиной , то траектория частицы имеет вид винтовой линии, навивающейся на силовую линию магн. поля. При этом силовые линии поля как бы прикреплены к плазме (вморожены в плазму) - смещение любого участка плазмы вызывает соответствующее смещение и деформацию силовых линий магн. поля, и наоборот. Если в плазме возбуждены достаточно интенсивные движения (такая ситуация возникает, напр., в результате взрыва сверхновой), то имеется много таких беспорядочно движущихся участков плазмы. Для наглядности их удобно рассматривать как отдельные плазменные облака, движущиеся друг относительно друга с большими скоростями. Осн. масса частиц плазмы удерживается в облаках и движется вместе с ними. Однако небольшое число частиц высокой энергии, для к-рых радиус кривизны траектории в магн. поле плазмы сравним с размером облака или превышает его, попадая в облако, не остаётся в нём. Эти частицы лишь отклоняются магн. полем облака, происходит как бы столкновение частицы с облаком в целом и рассеяние частиц на нём (рис. 5). В таких условиях частица эффективно обменивается энергией сразу со всем облаком. Но кинетич. энергия облака очень велика и в принципе энергия ускоряемой т.о. частицы может расти неограниченно, пока частица не покинет область с интенсивными движениями плазмы. Такова суть статистич. механизма ускорения, предложенного Э. Ферми в 1949 г. Аналогично происходит ускорение частиц при их взаимодействии с мощными ударными волнами (напр., в межпланетном пространстве), в частности при сближении двух ударных волн, образующих отражающие магн. "зеркала" (или "стенки") для ускоряемых частиц.

Все механизмы ускорения приводят к спектру К. л., в к-ром с ростом энергии число частиц убывает. На этом сходство механизмов кончается. Несмотря на интенсивные теоретич. и экспериментальные исследования, пока не найдено универсального механизма ускорения или комбинации механизмов, к-рые могли бы объяснить все особенности спектра и зарядового состава К. л. В случае, напр., импульсного электрич. поля Е скорость приращения жёсткости R определяется соотношением dR/dt = сЕ , т.е. не зависит от первоначальной магн. жёсткости частиц. При этом ускоряются все частицы в области действия поля E , их состав будет отражать состав исходной плазмы, а спектр иметь вид D(R) ~ exp-(R/R 0), где R 0 - характеристическая жёсткость спектра.

При ускорении плазменными волнами могут ускоряться частицы с энергией лишь в неск. раз больше тепловой. Число таких частиц не слишком мало, но условия ускорения будут существенно зависеть от сорта частиц, что должно вести к сильному изменению их состава по сравнению с составом исходной плазмы. Спектр ускоренных протонов, однако, и в этом случае может быть ~ exp-(R/R 0).

Бетатронный механизм, в основе к-рого лежит сохранение адиабатич. инварианта движения частицы = const, даёт степенной спектр и не избирателен по отношению к сорту частиц, но его эффективность пропорциональна магн. жёсткости частицы (dR/dt ~ R ), т.е. для его действия необходимо предварительное ускорение (инжекция).

Механизм ускорения Ферми даёт степенной энергетич. спектр , однако он избирателен по отношению к сорту частиц. Ускорение ударными волнами в космич. плазме также приводит к степенному энергетич. спектру, причём теоретич. расчёты дают показатель =2,5, что довольно хорошо соответствует наблюдаемой форме спектра К. л. Т.о., теория ускорения, к сожалению, допускает неоднозначный подход к интерпретации наблюдаемых спектров ускоренных частиц (в частности, солнечных К. л.).

Процессы ускорения импульсными электрич. полями вблизи нулевых линий магн. поля наблюдаются во время вспышек на Солнце, когда в течение неск. мин появляются частицы, ускоренные до энергии в неск. ГэВ. Вблизи пульсаров, в оболочках сверхновых звёзд в Галактике, а также во внегалактич. объектах - радиогалактиках и квазарах - этот процесс также может играть роль осн. механизма ускорения или, по крайней мере, роль инжектора. В последнем случае инжектируемые частицы ускоряются до макс. наблюдаемых в К. л. энергий в результате взаимодействий с волнами и с неоднородностями магн. поля в турбулентной плазме.

Наблюдения в различных масштабах (Галактика, Солнце, магнитосфера Земли и т.д.) показывают, что ускорение частиц происходит в космич. плазме всюду, где имеются достаточно интенсивные неоднородные движения и магн. поля. Однако в большом количестве и до очень больших энергий частицы могут ускоряться только там, где плазме сообщается очень большая кинетич. энергия. Это как раз и происходит в таких грандиозных космич. процессах, как вспышки сверхновых звёзд, активность радиогалактик и квазаров.

Наряду с огромной ролью К. л. в астрофизич. процессах, необходимо отметить их значение для изучения далёкого прошлого Земли (изменений климата, эволюции биосферы и т.д.) и для решения некоторых практич. задач современности (обеспечение радиац. безопасности космонавтов, оценка возможного вклада К. л. в метеоэффекты и т.п.).

Лит.:
Гинзбург В.Л., Сыроватский С.И., Происхождение космических лучей, М., 1963; Мирошниченко Л.И., Космические лучи в межпланетном пространстве, М., 1973; Дорман Л.И., Экспериментальные и теоретические основы астрофизики космических лучей, М., 1975; Топтыгин И, Н., Космические лучи в межпланетных магнитных полях, М., 1983.

(Л.И. Мирошниченко )


Загрузка...