ecosmak.ru

Система запуска газотурбинных установок. Система запуска двигателей наземных газотурбинных установок

Для начала самостоятельной работы турбокомпрессору ГТУ должна быть придана определенная скорость вращения. Это достигается с помощью какого-либо пускового двигателя, разгоняющего ротор турбокомпрессора. В процессе пуска при 2700-2900 об/мин включается подача топлива и на 2900-3200 об/мин происходит поджиг топлива. После воспламенения топлива зажигание выключается и горение в камерах поддерживается непрерывно. По мере роста температуры газа и увеличения числа оборотов возрастает мощность, вырабатываемая турбиной, и соответственно сокращается мощность пускового двигателя. По достижении примерно 5600 об/мин стартер отключается и наступает режим самостоятельной работы турбокомпрессора, при котором мощность турбины полностью обеспечивает мощность, потребляемую компрессором.

Асинхронные трехфазные двигатели переменного тока имеют неблагоприятную характеристику крутящего изменения момента в функции числа оборотов, поэтому их установочная мощность должна быть выше мощности, потребляемой турбокомпрессором в период пуска. Лучшими пусковыми характеристиками обладают электродвигатели переменного тока с фазовыми кольцами. Сокращение мощности асинхронного электродвигателя может быть достигнуто применением бесступенчатой передачи между двигателем и турбокомпрессором. Бесступенчатая передача может быть гидравлической или с объемными насосами и гидромоторами, или с гидромуфтами и гидродинамическими трансформаторами.

В очень крупных ГТУ с тяжелыми роторами мощности и размеры пусковых двигателей переменного тока достигают неприемлемых величин, вследствие чего для пуска приходится использовать электродвигатели постоянного тока, обладающие более благоприятными характеристиками. Как правило, источниками постоянного тока большой мощности станции не располагают, поэтому в подобных случаях система пуска включает в себя отдельную генератор-двигательную установку, преобразующую переменный ток в постоянный. Дополнительным преимуществом такой системы является возможность длительной обкатки турбокомпрессоров при любом числе оборотов в пределах допустимой мощности электросистемы, что очень ценно при наладке головного образца установки и при прослушивании турбоагрегатов после ремонтов.

Для уменьшения размеров пусковых электродвигателей обычно предусматривают их значительную перегрузку. Поэтому во избежание недопустимого перегрева пусковых двигателей число последовательных включений при неудачных пусках ограничивают обычно тремя; перед последующими включениями необходимо в течение 20-30 минут охлаждать их.

Рабочее число оборотов пускового электродвигателя соответствует числу оборотов вала компрессора в момент начала самостоятельной работы ГТУ, поэтому во избежание недопустимого превышения чисел оборотов пускового двигателя между ним и ГТУ устанавливают разобщительные муфты обгонного типа.

Электрозапуск запитывается от сети переменного тока 380 В, 50 Гц. Используется асинхронный двигатель с постоянными оборотами или синхронный двигатель БДПТ-1966.

Под системами, обслуживающими работу ГТУ, подразумевается комплекс технических средств, при помощи которых могут быть осуществлены все эксплуатационные режимы работы установки.

Работу судовой ГТУ обеспечивают следующие системы:

    топливная система;

    система пуска;

    система смазки;

    система суфлирования;

    система реверса;

    система охлаждения конструктивных узлов ГТУ;

    система регулирования, управления и защиты − РУЗ ГТД;

    воздухоприемные и газовыхлопные устройства.

Топливная система

Топливная система ГТД предназначена для подачи топлива к форсункам камер сгорания в количестве, обеспечивающем заданную мощность двигателя, а также для предварительной подготовки топлива в ГТУ, работающих на тяжелых сортах топлива.

В судовых ГТУ могут использоваться те же марки топлива, что и в дизельных энергетических установках:

    дизельные топлива по ГОСТ 305-82 марокЛ ­− летнее,З − зимнее,А − арктическое;

    дизельные топлива по ГОСТ 4749-73 марокДС иДЛ ;

    моторные топлива по ГОСТ 1667-68 марокДТ (обычной и высшей категории качества) иДМ ;

    газотурбинные топлива по ГОСТ 10433-75 марокТГ – обычной категории качества иТГВК – высшей категории качества;

    флотские мазуты по ГОСТ 10585-99 марокФ-5 иФ-12 .

В топливных системах легких прямоточных двигателей применяют исключительно легкие дистиллятные сорта топлив. Применение же дешевых низкосортных топлив заставляет учитывать последствия, связанные с их повышенной зольностью и содержанием примесей, которые могут вызывать коррозионные процессы в проточных частях ГТ, заносы деталей проточной части золой и смолистыми веществами. Поэтому ГТД, работающие на тяжелых сортах топлив, имеют в составе топливной системы отдельную систему предварительной подготовки топлива и ввода присадок. Работа же ГТУ на сравнительно дорогих дистиллятных топливах не сопряжена с какими либо трудностями и не требует специальных мероприятий, обеспечивающих их сжигание в КС.

Топливные системы судовых ГТУ должны обеспечивать следующие условия для работы двигателя:

    необходимое давление топлива для качественного его распыла в форсунках камер сгорания;

    вязкость топлива перед форсунками не более 1,2 – 1,5 о Е (градусов вязкости) для получения надлежащего качества распыла;

    отсутствие содержания воды, снижающей теплотворную способность топлива, вызывающей коррозию топливной аппаратуры и приводящей к срыву факела пламени в КС;

    отсутствие механических примесей, засоряющих и изнашивающих форсунки, топливные насосы и фильтры;

    прием топлива в цистерны основного запаса с береговых и плавучих нефтебаз.

Топливные системы ГТУ, работающих на тяжелых сортах топлива, дополнительно к перечисленному должны обеспечивать:

    возможность проведения на судне предварительной обработки топлива;

    предварительный подогрев тяжелого топлива до температуры 120 ÷ 130 о С для снижения его вязкости;

    тщательную многоступенчатую фильтрацию топлива и обеспечение надежного приема топлива главным топливным насосом;

    возможность использования пускового легкого топлива для облегчения пуска ГТУ;

    промывку форсунок легким топливом при плановых остановках или продувку их сжатым воздухом при экстренных остановках для предотвращения застывания тяжелого топлива в форсунках и обеспечения надежных последующих пусков ГТУ.

Рис. 67. Схема и состав топливной системы ГТУ, работающей на тяжелом топливе.

основная топливная система пресная промывочная вода

пусковая топливная система система подготовки топлива

БД – бак с деэмульгатором (полигликолевый эфир фенола ОП-7); СЦ – смесительная цистерна; ДН – дозирующий насос; НПВ – насос промывочной воды; ЗТЦ – запасная топливная цистерна; ТПН – топливоперекачивающий насос; ПТ – подогреватель топлива; П – подогреватель моющего раствора; – бак с раствором сернокислого магния; СМ – смеситель; ОБ – отстойные баки; Сеп – сепараторы; ЩФ – щелевые фильтры; СФ – сетчатые фильтры; РЦТТ – расходная цистерна тяжелого топлива; РЦЛТ – расходная цистерна легкого топлива; НЛТ – насос легкого топлива;

В – баллон со сжатым воздухом; ОФ – основные форсунки; ПФ – пусковая форсунка; БН – бустерный (подкачивающий) насос; ГТН – главный топливный насос; БК – байпасный клапан; К1 , К2 – краны; СК – стоп-кран; АРТ – автоматический распределитель топлива; ДК – дроссельный кран.

Схема топливной системы ГТУ, работающей на тяжелом топливе, показана на рис. 67. ГТД, работающие на тяжелых сортах топлива, имеют две параллельные топливные системы:пусковую иосновную .

Из бака БД деэмульгатор направляется в смесительную цистерну СЦ , куда подается пресная вода. Из смесительной цистерны вода, смешанная с деэмульгатором (50 % раствор ОП-7), дозирующим насосом ДН 1 направляется на всасывание насоса промывочной воды НПВ в количестве 0,4 ÷ 0,5 % от расхода топлива. После подогрева промывочной воды с деэмульгатором в подогревателе П вода в количестве 5 ÷ 8 % от расхода топлива подается в смесительное устройство СМ , где перемешивается с топливом, подаваемым топливоперекачивающим насосом ТПН из цистерны запасного топлива через подогреватель топлива. Часть воды направляется в бак, куда загружают кристаллический сернокислый магний MgSO 4 , растворяемый до 25 % концентрации. Добавка раствора MgSO 4 в топливо повышает температуру плавления пятиокиси ванадия V 2 O 5 примерно до 1100 о С (V 2 O 5 содержится в тяжелых фракциях нефти и вызывает в расплавленном состоянии сильнейшую коррозию, называемую высокотемпературной ванадиевой коррозией). Полученный в баке раствор сернокислого магния подается дозирующим насосом ДН2 в расходную цистерну тяжелого топлива, либо в топливную магистраль перед форсунками. Перемешанное с промывочной водой в смесителе СМ топливо направляется в отстойные баки ОБ , где происходит отделение очищенного топлива от воды с растворенными в ней солями. Из баков топливо поступает в сепараторы, где окончательно отделяется от оставшейся воды.

Отсепарированное топливо поступает в расходную цистерну РЦТТ , емкость которой определяется запасом топлива примерно на 8 часов работы ГТУ (две вахты). Из РЦТТ промытое и содержащее присадки топливо через щелевые фильтры забирается бустерным насосом БН и через сетчатые фильтры направляется на всасывание к главному топливному насосу ГТН . ГТН направляет топливо через следующую ступень фильтров в подогреватель топлива, в котором температура подогрева изменяется регулятором, управляющим байпасным клапаном БК . Расход топлива на форсунки регулируется дроссельным краном ДК , управляемым с пульта управления и сливающим часть топлива обратно в РЦТТ . Подогретое топливо после фильтрации направляется в автоматический распределитель топлива АРТ с автоматом запуска, управляющий подачей топлива к основным форсункам двигателя ОФ .

При плановых остановках топливная система промывается легким дистиллятным топливом, подаваемым насосом легкого топлива из цистерны легкого топлива через сетчатые фильтры. При промывке с помощью крана К2 отсекается подача основного топлива, которое полностью направляется на слив в РЦТТ через дроссельный кран ДК . В топливную магистраль за краном К2 поступает легкое топливо, на котором ГТУ, предварительно переведенная в режим холостого хода, работает 3–5 мин., после чего подача топлива полностью прекращается, и топливная магистраль от крана К2 до форсунок остается заполненной легким топливом. При этом обеспечивается легкий и надежный последующий пуск ГТУ.

При экстренных остановках подача топлива к форсункам отсекается стоп-краном СК , к которому подведены импульсы от системы РУЗ ГТД . При этом топливо из напорной магистрали перепускается на слив в РЦТТ , а участок топливной магистрали после стоп-крана СК , включая АРТ и форсунки ОФ , продувается сжатым воздухом из баллона В .

Топливная система легкого топлива используется также при пуске, когда топливо из РЦЛТ топливным насосом через кран К1 подается к пусковой форсунке ПФ . В период, предшествующий пуску, топливная система прогревается при работающих насосах БН и ГТН и подогревателе топлива. При этом дроссельный кран ДК полностью закрыт и все топливо при помощи стоп-крана направляется на сброс в цистерну РЦТТ .

Для ГТД, использующих для работы только легкое дистиллятное топливо, система значительно упрощается. В этом случае полностью исключается часть топливной системы, предназначенная для промывки и ввода присадок, а также часть системы легкого топлива. Для таких двигателей топливная система содержит: расходную цистерну ,фильтры перед и за ГТН,стоп-кран ,АРТ ифорсунки . Топливоперекачивающий насос в этом случае подает топливо из запасной цистерны непосредственно в расходную цистерну.

Система пуска

Система пуска ГТУ предназначена для ввода установки в действие. Эта операция требует наличия внешнего источника энергии (пускового двигателя), который представляет собой основной элемент системы пуска.

В общем случае система пуска ГТУ содержит следующие компоненты:

    пусковой двигатель ;

    запальное устройство ;

    обгонную муфту .

Пусковой двигатель предназначен для первоначальной раскрутки турбокомпрессорного агрегата и в момент пуска присоединен к ротору турбокомпрессора. Вращая ротор турбокомпрессора, пусковой двигатель заменяет собой еще неработающую газовую турбину, обеспечивая подачу воздуха в камеры сгорания.

В качестве пусковых двигателей в ГТД могут использоваться:

    электродвигатели постоянного и переменного тока (электростартеры );

    турбостартеры , представляющие собой автономные ГТД малой мощности со свободной силовой турбиной. В этом случае пуск ГТД производится в два этапа: на первом пускается турбостартер своим пусковым электродвигателем (обычно постоянного тока с запиткой от аккумуляторной батареи), а на втором – турбокомпрессор главной установки. Такая схема пуска обычно используется для турбореактивных и турбовинтовых авиационных двигателей;

    паровые турбины (турбодетандеры ), обычно применяемые на судах, в составе вспомогательной установки которых имеются вспомогательные паровые котлы;

    пневмотурбины , работающие от системы пускового сжатого воздуха.

Запальное устройство предназначено для обеспечения зажигания факела в камерах сгорания и представляет собой пусковую топливную форсунку и электрическую свечу зажигания.

Высоковольтная свеча дает постоянный искровой разряд весь период работы пускового блока и воспламеняет топливо пусковой форсунки. Факел пламени пусковой форсунки направлен таким образом, чтобы обеспечить устойчивое зажигание топлива основной форсунки. После зажигания топлива основной форсунки через пламяперебрасывающие патрубки происходит зажигание топлива в форсунках остальных камер сгорания. Пусковое запальное устройство, выполнив свою функцию, автоматически отключается вместе с пусковой топливной системой.

Обгонная муфта используется для присоединения пускового двигателя к турбокомпрессору, обеспечения его раскрутки и автоматического отключения пускового двигателя от вала ГТД при наборе турбокомпрессором заданной частоты вращения.

Процесс пуска ГТД состоит из следующих периодов (рис. 68):

1 период – холодный разгон. Пусковой двигатель с помощью обгонной муфты присоединяется к ротору того турбокомпрессорного агрегата, в составе которого имеется пусковая камера сгорания с запальным устройством. Вращаемый пусковым двигателем компрессор начинает нагнетать воздух в газовоздушный тракт установки, вследствие чего создается ток воздуха от ком­прессора через камеры сгорания, проточные части турбин, теплообменные аппа­раты в выпускной газоотвод, и выброс его в атмосферу. После того как расход воздуха, подаваемый компрессором в КС, окажется достаточным для окисления мини­мального количества топлива, в камеру сгорания через пусковую форсунку начинают подавать топливо от пусковой топливной системы, которое воспламеняется запальным устройством.

2 период – режим сопровождения . После воспламенения топлива в камерах сгорания в газовую турбину начинает поступать горячий воздух, смешанный с продуктами сгорания, что приводит к появлению на валу турбины увеличенного вращающего момента, суммирующегося с вращающим моментом пускового двигателя. С этого момента разгон ротора турбокомпрессора становится более интенсивным за счет совместной работы пускового двигателя и газовой турбины, увеличивая расход воздуха в КС. При этом одновременном увеличивается расход топлива, подаваемого в камеры сгорания. При дальнейшем увеличении частоты вращения турбокомпрессора турбина принимает на себя всю нагрузку компрессора, обусловленную сжатием воздуха и потерями энергии на трение в подшипниках. При частоте вращения компрессора, превышающей частоту вращения пускового двигателя, обгонная муфта отключает пусковой двигатель от ротора турбокомпрессора.

3 период – горячий разгон . После отключения пускового двигателя дальнейший разгон ротора тур­бокомпрессора осуществляется за счет разности вращающих моментов, созда­ваемых газом на валу турбины и воздухом на валу компрессора (с учетом тре­ния в подшипниках). Разгон продолжается до тех пор, пока упомянутая раз­ность вращающих моментов не станет равной нулю, что соответствует дости­жению равновесного установившегося режима работы турбокомпрессора. Равновесие может наступить при любом расходе подаваемого в камеру горе­ния топлива, превышающем некоторое минимальное значение, ниже которого не может быть получен установившийся режим работы турбокомпрессора.

Рис. 68. Периоды пуска ГТД.

ПД – пусковой двигатель; М – обгонная муфта; Тл – подача топлива; М ПД – крутящий момент пускового двигателя; М ГТ – крутящий момент газовой турбины.

Обычно на систему пуска судовой ГТУ возлагается задача выведения установки на такой режим, при котором турбокомпрессор работает при некоторой установившейся частоте вращения, а мощность, развиваемая установ­кой на валу пропульсивной турбины, близка к нулю. Такой режим называетсярежимом холостого хода – ХХ .

Управление пуском турбокомпрессора обычно сводится к следующим операциям:

    Включению обгонной муфты;

    Включению пускового двигателя;

    Включению запального устройства;

    Подаче топлива в камеру сгорания.

Обычно включение пускового двигателя и запального устройства осуществляется одновременно. Момент начала подачи топлива в камеру сгорания определяется давлением топлива, необходимым для получения надлежащего распыливания, и расходом воздуха, подаваемого компрессором, при котором температура газа перед газовой турбиной не превысит предельного значения, и будет исключена возможность возникновения явления помпажа осевого компрессора.

Система смазки

Система смазки ГТД предназначена для подачи масла на подшипники турбин и компрессоров, зубчатого зацепления и отвода тепла от них.

К маслам, применяемым в судовых ГТУ предъявляются следующие требования:

    высокая устойчивость к образованию осадков и лаковых отложений;

    высокая температура вспышки (рабочая температура подшипников компрессоров и газовых турбин может достигать 150 ÷ 250 о С );

    низкая испаряемость (температура кипения должна быть на ~ 50 о С выше его максимальной рабочей температуры);

    масла ГТУ должны служить защитной средой при бездействии установки и не вызывать образования коррозии в масляной системе.

Для смазки и охлаждения подшипников качения ГТД применяют маловязкое термостабильное масло для судовых газовых турбин – ГОСТ 10289-79; а для смазки зубчатых передач –масло турбинное 46 итурбинное с присадкой – Тп-46 ГОСТ 9972-74.

В ГТУ, где система автоматического регулирования, управления и защиты (РУЗ ГТД) имеет гидравлические приводы исполнительных механизмов, в качестве рабочей среды используют маловязкое масло из системы смазки ГТД.

Используемые схемы систем смазки судовых и корабельных ГТД могут быть разделены на две группы:

    напорные системы , характеризующиеся струйной подачей масла к подшипникам под давлением через специальные каналы во вкладышах или через масляные форсунки. Эти системы применяются в ГТД с подшипниками качения и скольжения.

    системы смазки масляным туманом .

В свою очередь напорные системы можно разделить:

    на системы форсированной смазки , в которых смазка подается ко всем узлам от масляного насоса (масляный насос часто навешен на ГТД и получает вращение от ротора компрессора через коробку приводов);

    системы гравитационной смазки , в которых смазка подается из цистерны, расположенной на уровне 10 ÷ 12м над ГТД для обеспечения необходимого напора масла. Масляный насос в этом случае только возвращает масло из сточно-расходной цистерны в гравитационную цистерну. Эта схема приемлема только для судов транспортного флота, где размеры машинных отделений позволяют разместить элементы гравитационной системы смазки. Гравитационные системы смазки также используются в качестверезервных систем смазки . Объем гравитационных цистерн выбирают из учета 10 ÷ 15 минутной работы ГТД, в течение которых могут быть устранены неисправности в работе основной системы смазки, либо дана команда на отключение подачи топлива в камеры сгорания для экстренной остановки ГТД на выбеге.

Система смазки судовой ГТУ состоит из следующих основных элементов (рис. 69): основного ирезервного масляных насосов ;фильтров ;подогревателей иохладителей масла ;масляных цистерн (расходной, запасной, грязного масла, гравитационной для гравитационных систем смазки);масляных сепараторов ;маслоперекачивающего насоса ;КИП и трубопроводов.

Рис. 69. Схема масляной системы ГТУ (форсированная и гравитационная системы).

трубопроводы форсированной смазки;

трубопроводы, относящиеся к гравитационной системе;

сливные трубопроводы.

РМЦ – расходная масляная цистерна; Гр .Ц – гравитационная цистерна;

ЦЗМ – цистерна запасного масла; ЦГМ – цистерна отработавшего (грязного) масла;

ОМН – основной масляный насос; РМН – резервный масляный насос;

МФ – магнитный фильтр; ГМФ – главные масляные фильтры; МО – маслоохладитель; ЗФ – защитные фильтры; МПН – маслоперекачивающий насос; МСеп . – сепаратор.

В системах смазки ГТД обязательно предусматривается защита от падения давления масла. При падении давления масла должен автоматически включиться в работу резервный масляный насос, либо система должна перейти на смазку по гравитационной линии. Если давление в системе смазки продолжает падать (что может свидетельствовать о разрыве напорного масляного трубопровода), из системы выдается сигнал на стоп-кран топливной системы, отключающий подачу топлива на форсунки двигателя.

Маслоперекачивающий насос предназначен для перекачки отработавшего масла из РМЦ в цистерну отработавшего масла, для пополнения убыли масла в системе, либо полной замены масла путем его перекачки из ЦЗМ в РМЦ.

Сепаратор масла используется для удаления из масла воды и механических примесей. В холодное время года возможна прокачка масла сепаратором черезмаслоподогреватель (на схеме не показан). Обогрев масла в РМЦ может производиться и от системы змеевиков, по которым пропускается пар от вспомогательного парового котла.

Система суфлирования

Система суфлирования предназначена для отбора масловоздушной смеси из масляных полостей подшипников ГТД, отделения масла от воздуха и последующего возвращения масла в систему смазки ГТД.

В состав системы суфлирования входят:

    трубопроводы , соединяющие масляные полости подшипников с осадительной емкостью;

    осадительная емкость (бак), где происходит выделение капель масла и осаждение их на стенках; Часто роль осадительного бака играет сточно-расходная цистерна масляной системы;

    маслоотделительные сепараторы (центрифуги ), завершающие процесс разделения масловоздушной смеси на составные части; они приводятся в действие, от коробки приводов, соединенной с валом турбокомпрессора ГТД посредством редукторной передачи.

Система реверса

Система реверса ГТД предназначена для изменения направления вращения вала движителя на противоположное. На судах и кораблях с ГТУ могут применяться следующие средства для обеспечения реверса:

    специальные двигатели заднего хода . Такой способ реверса часто применяется на судах на подводных крыльях – СПК. В этом случае двигатели заднего хода имеют свои независимые движители, находящиеся в неводоизмещающем положении СПК над поверхностью воды, и погружающиеся в воду при движении судна в водоизмещающем положении;

    электрическая передача . Этот способ реверса применим на тех судах, где используется электродвижение (ГТД работает на электрогенератор, передающий электроэнергию на гребной электродвигатель);

    реверсивная передача . В этом случае ГТД передает вращение на передачу, конструкция которой позволяет менять направление вращения выходного вала, соединенного с движителем, без изменения направления вращения вала самого ГТД. Наиболее часто используются гидрореверсивные передачи, включающие в себя гидромуфту и гидротрансформатор, и механические передачи (реверсивные редукторы);

    реверсивные движители (как правило, винты регулируемого шага). Реверс осуществляется за счет перекладки поворотных лопастей винта из положения переднего хода в положение заднего хода. В этом случае смены направления вращения вала движителя на противоположное не происходит;

    реверсивные ГТД , способные изменять направление вращения вала пропульсивной газовой турбины.

Использование реверсивных судовых ГТД связано с применением в их конструкции отдельных турбин (ступеней)заднего хода ТЗХ , или специальныхреверсивных центростремительных турбин .

Реверсивные осевые турбины выполняются в двух возможных вариантах (рис. 70):

    в виде отдельной турбины заднего хода , находящейся на отдельном диске, жестко связанном с ротором пропульсивной турбины переднего хода (рис. 70.а );

    в виде совмещенного расположения на одном диске ступеней переднего и заднего хода (использование двухъярусных лопаток – рис. 70.б ).

Важным элементом системы реверса в реверсивных осевых турбинах является газораспределительный орган , с помощью которого газ после турбины компрессора может быть направлен либо в проточную часть турбины переднего хода, либо в проточную часть турбины заднего хода.

При реверсе сначала происходит торможение ротора пропульсивной турбины газом, подаваемым в проточную часть турбины обратного хода, которая вращается кромками рабочих лопаток вперед. Этот режим работы двигателя называется «режимом контргаза». После полной остановки ротора пропульсивной турбины газораспределительный орган направляет весь поток газа на турбину обратного хода.

Рис. 70. Схемы взаимного расположения проточных частей ТПХ и ТЗХ

а – с ТЗХ, выполненной на отдельном диске;

б – с ТЗХ, выполненной в виде второго яруса лопаток.

1 – турбина компрессора; 2 – турбина переднего хода; 3 – турбина заднего хода;

4 – газораспределительный орган; 5 – второй ярус лопаток ТЗХ.

Перемещения газораспределительного органа должны быть взаимосвязаны с подачей топлива на форсунки. При осуществлении реверса ГТД должна соблюдаться следующая последовательность операций:

    Уменьшение подачи топлива на форсунки до расхода холостого хода;

    Одновременная перекладка газораспределительного органа, осуществляющего перепуск газа в ТЗХ, при постепенном уменьшении расхода газа до нуля, подаваемого в проточную часть ТПХ;

    Увеличение подачи топлива на форсунки до величины, соответствующей заданному режиму обратного хода, после полной перекладки газораспределительного органа.

Главным недостатком описанных выше способов реверса является наличие больших вентиляционных потерь из-за холостого вращения неработающих ступеней (на переднем ходу вхолостую вращаются ступени ТЗХ, на заднем ходу – ТПХ). На холостое вращение ступеней турбины в плотной воздушной или газовой среде затрачивается значительная часть энергии двигателя. Эти потери для газотурбинных установок могут достигать 3 ÷ 4 % от мощности ГТД для неработающей ТЗХ, и еще большей величины для неработающей ТПХ. Кроме того, при холостом вращении турбины происходит сильный нагрев ее элементов, что влечет за собой дополнительные затраты на ее охлаждение. В случае использования двухъярусных лопаток дополнительной проблемой является обеспечение прочности высоких лопаток при высоких частотах вращения роторов турбин.

Реверсивные центростремительные турбины

Этот способ реверса характерен тем, что при его использовании отсутствуют вентиляционные потери как на переднем, так и на заднем ходу судна. Это обусловлено тем, что при радиальном расположении лопастей одно и то же рабочее колесо может быть использовано для работы и на переднем, и на заднем ходу. Реверс при этом осуществляется поворотом направляющих лопаток соплового венца (рис. 71).

Рис. 71. Схема реверсивной центростремительной турбины.

1 − сопловый венец с поворотными лопатками; 2 − рабочее колесо с радиальными лопастями;

3 ­− лопатки в положении ПХ;

4 − лопатки в положении ЗХ.

Несмотря на положительные свойства реверсивные центростремительные турбины пока не получили широкого распространения в судовых ГТУ из-за трудности компоновки проточных частей, состоящих из нескольких последовательно расположенных центро-стремительных турбин и сложности сочетания в одном корпусе центро-стремительных и осевых ступеней. Вместе с тем рациональное использование ревер-сивных центростремительных турбин предполагает сочетание осевых турбин в качестве приводных для компрессоров с центростремительными пропульсивными турбинами.

Системы охлаждения конструктивных узлов ГТУ

Охлаждение деталей газовой турбины, подверженных воздействию высоких температур, применяется для достижения того температурного уровня и перепадов температур, которые обеспечивают надежную работу ГТД на всех режимах.

К системам охлаждения конструктивных элементов ГТУ относятся:

    система охлаждения забортной водой оборудования ГТУ;

    система охлаждения пресной водой конструктивных узлов ГТУ;

    система воздушного охлаждения конструктивных узлов ГТУ.

Система охлаждения забортной водой оборудования ГТУ (рис. 72) предназначена для отвода тепла от маслоохладителей, воздухоохладителей и охладителя пресной воды (в случае использования системы охлаждения пресной водой конструктивных узлов ГТУ). Система охлаждения выполняется как с принудительной подачей воды − с помощью насоса центробежного или осевого типа, так и самопроточной. В самопроточных системах насос охлаждающей забортной воды используется только на режимах малого хода, стопа или заднего хода, когда в приемном патрубке не может быть создан напор, достаточный для преодоления гидравлического сопротивления тракта охлаждения.

Рис. 72. Схема систем водяного охлаждения ГТУ.

РЦПВ – расходная цистерна пресной воды; ОН – основной насос контура охлаждения; РН – резервный насос контура охлаждения; Ф – фильтры; 1 – подвод охлаждающей воды к нижней части корпуса; 2 – подвод охлаждающей воды к верхней части корпуса; 3 – отвод горячей воды от нижней части корпуса; 4 – отвод горячей воды от верхней части корпуса; ОПВ – охладитель пресной воды; МО – маслоохладитель;

ВО – воздухоохладитель; ПЗВ – прием забортной воды; ФЗВ – фильтр забортной воды; ЦН – циркуляционный насос забортной воды; СЗВ – слив забортной воды;

М – масло; В – воздух.

Система охлаждения пресной водой (рис. 72) выполняется только для неподвижных частей (корпусов компрессоров, газовых турбин, выхлопных и улиточных патрубков и т.д.) ГТД непрямоточного типа.

Охлаждение ГТД осуществляется циркуляцией пресной воды по специальным каналам для охлаждающей воды или по полостям, образованным двойными стенками корпусов турбин и патрубков. Обычно в систему водяного охлаждения входит следующее оборудование: расходная цистерна пресной воды, основной и резервный циркуляционные насосы, охладитель пресной воды, фильтры и арматура. Охлаждение контура пресной воды осуществляется в охладителе забортной водой.

Системы воздушного охлаждения корпусов турбин (рис. 73) используются в прямоточных двигателях с осевым движением воздуха и газа, корпус которых имеет простую цилиндрическую форму. Охлаждающий воздух поступает в кольцевое пространство между наружным кожухом и корпусами турбин, омывает корпуса и выводится в газоход за счет эжектирующего действия струи газа. В качестве охлаждающей среды могут использоваться: воздух машинного отделения, атмосферный воздух или воздух, отбираемый от одной из ступеней компрессора.

О хлаждение элементов проточ-ной части турбин: сопловых, рабочих лопаток и дисков ротора, осуществляется воздухом, отбирае-мым от одной из ступеней компрессора.

К наиболее распространенным схемам охлаждения элементов проточной части относятся открытая наружная иоткрытая внутренняя системы охлаждения.

Рис. 73. Схема воздушного охлаждения корпуса ГТД.

УПГ – утилизационный парогенератор;

В – трубопровод охлаждающего воздуха;

Г – газоход.

Открытые наружные системы охлаждения (парциальные, экранные и струйные) снижают температуру металла деталей проточной части на 50 ÷ 70 о С . Воздух через отверстия в роторе подводится к зазору между ротором и направляющим аппаратом по каналам, обдувая вершину направляющего аппарата, корень рабочих лопаток, и смешивается с потоком газа в проточной части турбины (рис. 74.а ).

При внутреннем воздушном охлаждении воздух поступает внутрь рабочей лопатки через специальные отверстия в ее корне. В зависимости от конструкции охлаждаемых лопаток, воздух проходит по каналам внутри лопатки (рис. 74.б -в ), либо через щель между дефлектором (внутренней вставкой) и наружной оболочкой лопатки (рис. 74.г ), и затем выбрасывается в проточную часть через отверстия в торцевой части или задней кромке, где смешивается с потоком газа. Применение внутреннего охлаждения лопаток позволяет снизить температуру металла рабочих лопаток на 150 ÷ 300 о С .

Рис. 74. Способы охлаждения турбинных лопаток

а – наружная открытая система; б , в , г – внутренние открытые системы охлаждения.

Охлаждение дисков и роторов газовых турбин производится с помощью циклового воздуха и может происходить несколькими способами:

    радиальным обдувом , когда воздух подводится через отверстия в роторе к корневой части диска и движется к его периферии;

    струйным охлаждением , при котором струйки воздуха обдувают непосредственно обод диска;

    продувкой воздуха через зазоры хвостовиков лопаток;

    заградительным охлаждением , при котором между газами и поверхностью диска создается защитная воздушная пленка;

    комбинированным способом , сочетающим в себе несколько вышеперечисленных.

Система регулирования, управления и защиты (РУЗ ГТД )

В ходе эксплуатации судовой ГТУ возможны частые смены ходов судна и работа установки на переменных режимах. При работе ГТД на всех рабочих режимах необходимо обеспечить:

    возможно более экономичную работу установки;

    температуру газов перед газовой турбиной, не превышающую допустимую по условиям жаропрочности материалов проточной части;

    устойчивый процесс горения топлива без срывов факела;

    безпомпажный режим работы осевого компрессора.

Выполнение всех этих условий при работе ГТД обеспечивается системами регулирования, управления и защиты – РУЗ ГТД, на которые возлагаются следующие функции:

      Осуществление и поддержание всех эксплуатационных, стационарных и переходных режимов ГТУ при минимальном числе воздействий на ручные органы управления.

      Преобразование и передача импульсов от ручных органов управления к техническим средствам, управляющим режимами работы ГТУ и обслуживающим ее.

      Исключение возможности неправильных манипуляций обслуживаю­щего персонала при управлении установкой на всех режимах.

      Вывод установки из действия или ограничение возможности ее эксплуатации без вмешательства обслуживающего персонала на режимах, которые сопровождаются нарушениями нормаль­ных условий работы любого конструктивного узла или составного элемента установки.

      Предоставление обслуживающему персоналу информации, необходи­мой для наблюдения за условиями работы ГТД и элементов установки и сигнализация о нарушениях нормальных условий их работы.

Мощность, получаемая на выходном фланце ГТД, зависит от расхода топлива, подаваемого в камеры сгорания, поэтому система регулирования обычно объединяется с топливной системой самого двигателя. Изменение мощности ГТД можно осуществить воздействием на элемент, управляющий подачей топлива, а характер воздействия зависит от типа топливных форсунок, установленных на двигателе (регулируемые или нерегулируемые), и способа изменения производительности регулируемых форсунок.

В зависимости от того, как осуществляется процесс регулирования, различают два основных способа регулирования мощности ГТД: качественное и количественное .

Качественное регулирование производится изменением температуры газа перед газовой турбиной при малом изменении расхода нагнетаемого воздуха. В этом случае для уменьшения нагрузки уменьшается количество подаваемого в камеры сгорания топлива. При этом увеличивается коэффициент избытка воздуха и снижается температура газов перед газовой турбиной, что приводит к снижению теплоперепада, срабатываемого на турбине и уменьшению мощности установки. Качественное регулирование является наиболее простым, но приводит к значительному снижению КПД при отклонении режима работы двигателя от расчетного.

Количественное регулирование осуществляется изменением частоты вращения компрессора, что в свою очередь вызывает изменение расхода воздуха и степени повышения давления. При таком способе регулирования резко меняются температуры газа перед газовой турбиной, что вызывает максимальные термические напряжения в деталях проточной части.

В реальных ГТУ исключительно редко применяют какой-то отдельный способ регулирования мощности, а обычно используют смешанное регулирование , сочетающее в себе оба описанных способа. Во всех случаях изменение полезной мощности в конечном счете достигается изменением расхода сжигаемого топлива.

При использовании нерегулируемых форсунок изменение расхода топлива в камеры сгорания может производиться с помощью насоса переменной производительности, либо изменением слива части топлива с напора топливного насоса в расходную топливную цистерну. Способы изменения расхода топлива врегулируемых форсунках будут рассмотрены во второй части пособия при рассмотрении систем регулирования паровых котлов.

В ГТУ наиболее частым способом регулирования расхода топлива, поступающего в камеры сгорания, является использование многокаскадных или многоканальных форсунок. Использование многоканальных форсунок позволяет существенно увеличить диапазон изменения подачи топлива при ограниченном изменении давления топлива за топливным насосом. Объектом регулирования в таких системах является дроссельный кран (рис. 75).

Рис. 75. Схема управления подачей топлива при применении многоканальных форсунок.

ТН – топливный насос переменной производительности; Ш – шайба топливного насоса; Т – тяга подачи топливного насоса; РЗ – распределительный золотник (входит в состав АРТ ); П – поршень распределительного золотника; Ф – топливная форсунка; Р – рукоятка управления дроссельным краном – «сектор газа»; ДК – дроссельный кран; – подача топлива в первый канал форсунок; – подача топлива во второй канал форсунок; 1 – всасывающий трубопровод топливного насоса; 2 – напорный трубопровод топливного насоса; 3 – слив топлива в цистерну.

Количество топлива, подаваемого в камеры сгорания двигателя (рис. 75) определяется давлением топлива в полости распределительного золотника. При полностью открытом дроссельном кране, управляемом системой регулирования, давления топлива, подаваемого топливным насосом, недостаточно для того, чтобы передвинуть поршень, нагруженный пружиной. Поршень находится в крайнем левом положении и перекрывает своим телом отверстия, подающие топливо к первому и второму каналам форсунок. При этом все топливо, поступившее в полость золотника, сливается по сливной магистрали в расходную топливную цистерну. По мере прикрывания дросселя давление в полости золотника постепенно увеличивается, и поршень начинает отодвигаться к крайнему правому положению, открывая сначала отверстие подачи топлива в первые каналы форсунок (показано на рисунке), а при дальнейшем закрывании золотника – во вторые каналы форсунок. Управление ГТД в рассматриваемом случае сводится к управлению положением дроссельного крана.

Системы управления ГТД, работающих на ВРШ, более сложны. Одна и та же мощность может быть получена большим количеством различных сочетаний расхода топлива и угла поворота лопастей винта. Из этих сочетаний, как правило, выбирается то, которое обеспечивает максимальную экономичность установки (т.е. каждому углу поворота лопастей винта должен соответствовать определенный расход топлива).

Обычно регулированию подвергаются следующие параметры работы газотурбинного двигателя:

Система защиты ГТД предназначена для ограничения мощности двигателя или обеспечения его экстренной остановки при возникновении аварийных ситуаций.

Защитные устройства по степени влияния на работу двигателя делятся на ограничительные ипредельные .

Ограничительные защитные устройства срабатывают в том случае, когда нарушения нормальных условий работы ГТУ носят кратковременный харак­тер и (или) когда нормальные условия могут быть восстановлены воздействием на специальные устройства, устраняющие причину нарушения работы. К ограничительным защитным устройствам относятся:

    противопомпажная защита , предотвращающая возникновение помпажа компрессора путем воздействия на противопомпажные устройства при при­ближении режимных точек к границам помпажных зон;

    защита против угона роторов турбомашин, предотвращающая по­вышение частоты вращения роторов сверх расчетной путем уменьшения рас­хода топлива, подаваемого в камеры сгорания; Этот вид защиты ограничивает частоту вращения турбомашин в диапазоне 100 ÷ 110 % по сравнению с режимом но­минальной нагрузки. При дальнейшем повышении частоты вращения срабаты­вает защитное устройство предельного действия, полностью прекращающее подачу топлива в камеры сгорания;

Предельные защитные устройства применяются в тех случаях, когда нарушения нормальных условий работы ГТУ носят длительный характер и когда эти нарушения могут привести к авариям установки. В качестве предельной защиты используют:

    защиту по частоте вращения ротора пропульсивной турбины (защиту от угона ротора);

    защиту по частоте вращения роторов компрессоров ;

    защиту по снижению давления масла в системе смазки ГТД.

Все предельные защитные устройства выдают импульс на стоп-кран топливной системы (см. рис. 67), мгновенно отключающий подачу топлива на форсунки двигателя.

Воздухоприемные и газовыхлопные устройства

Воздухоприемные устройства судовых ГТД предназначены для подачи воздуха к двигателям, защиты ГТД от попадания посторонних предметов, выхлопных газов, брызг и солей морской воды, эрозионно опасных частиц и предохранения входных устройств компрессоров от обледенения.

На водоизмещающих судах наиболее распространены надпалубные воздухоприемные устройства шахтного типа, в состав которых могут входить следующие элементы (рис. 76):

    приемный патрубок (П ), предназначенный для забора воздуха из атмосферы и формирования воздушного потока. Приемные патрубки располагают в той части судна, где возможно наименьшее попадание в поток воздуха солей и брызг морской воды, выхлопных газов, пыли и других инородных предметов;

    фильтры (Ф ), обеспечивающие очистку воздуха, поступающего на всасывание компрессора;

    шахта (Ш ). С целью снижения уровня шума шахту с внутренней стороны часто облицовывают звукопоглощающим покрытием (ЗП );

    устройство глушения шума (ГШ ), предназначенное для уменьшения уровня шума воздушного потока; Основным источником шума в ГТД является всасывающая часть компрессора, в которой шум возникает при взаимодействии потока воздуха с неподвижным входным направляющим аппаратом и последующим быстро вращающимся первым рядом рабочих лопаток;

    Рис. 76. Схема шахтного

    воздухоприемного

    устройства ГТД.

    охладители (ВО ) иподогреватели (ВП )воздуха ; Охлаждение всасываемого компрессором воздуха позволяет увеличить мощность ГТУ (особенно при высоких температурах забортного воздуха) Охлаждение можно обеспечить при пропускании воздуха через воздухоохладитель, либо впрыском в него мелко распыленной очищенной воды. При температуре забортного воздуха близкой к 0 о С в условиях высокой влажности возникает необходимость подогрева воздуха, поступающего в компрессор, во избежание обледенения входного устройства ГТД и входного направляющего аппарата. Подогрев воздуха осуществляется перепуском небольшой части циклового воздуха, отбираемого за компрессором, либо перепуском части продуктов сгорания в поток всасываемого воздуха;

    улиточный патрубок , предназначенный для формирования воздушного потока, поступающего в компрессор.

Надпалубные воздухоприемные устройства иногда выполняют для подачи воздуха в машинное отделение, откуда его забирает один или несколько ГТД.

Газовыхлопные устройства судовых ГТД служат для отвода выхлопных газов от двигателя с минимальными потерями энергии и, кроме того позволяют:

    снизить уровень шума со стороны выхлопа:

    эжектировать охлаждающий воздух из-под кожуха двигателя (рис. 73);

    снизить температуру газа за турбиной до требуемого уровня;

    обеспечить подвод газов к теплоутилизационным котлам.

ГВУ состоят из различных (в зависимости от типа и размещения двигателя) сочетаний следующих элементов: затурбинного диффузора; улиточного патрубка; удлинительных труб; поворотного колена; эжекторного усилителя тяги; реактивного сопла; систем охлаждения и шумоглушения.

При размещении ГТД в непосредственной близости от верхней палубы ГВУ выполняются в виде реактивных сопел с выходом в кормовую часть судна (для быстроходных судов). При этом остаточная часть кинетической энергии газов преобразуется в дополнительную реактивную тягу.

При размещении ГТД в МО судна на значительном удалении от верхней палубы ГВУ обязательно содержит выхлопной патрубок, поворачивающий поток газа на 90 о.

Изобретение относится к области энергетики, в частности к способам пуска и газоснабжения газоперекачивающих агрегатов, и может быть использовано при пуске любых газотурбинных установок. Способ пуска энергетической газотурбинной установки включает три этапа. На первом и втором этапах осуществляют раскрутку жестко связанных роторов турбокомпрессора внешним пусковым устройством, например детандером, жестко соединенным через автоматическую сцепную муфту с валом турбокомпрессора. Турбокомпрессор содержит компрессор, турбину и камеру сгорания, снабженную топливно-регулирующим клапаном, закрытым на первом этапе пуска и приоткрытом на втором. Последующее отсоединение от пускового устройства жестко связанных роторов компрессора и турбины при достижении ими расчетных оборотов и вывод их на рабочие обороты на третьем этапе за счет увеличения расхода и давления топливного газа. На выходе осевого компрессора устанавливают сбросный клапан, соединенный с входом камеры сгорания. Пуск газотурбинной установки на первом и втором этапах осуществляют при открытом сбросном клапане, а перед отсоединением пускового устройства закрывают сбросный клапан. Изобретение направлено на уменьшение дисбаланса мощности, вызванного провалом частоты вращения ротора турбины и скачком температуры перед ней, в момент отключения пускового устройства при пуске газотурбинной установки. 2 ил.

Изобретение относится к области энергетики, а точнее к способам пуска и газоснабжения газотурбинных установок (ГТУ) на газообразном топливе.

Пуск ГТУ является самым ответственным этапом в организации эксплуатации компрессорной станции. В процессе трогания роторов ГТУ начинают расти динамические нагрузки, возникают термические напряжения в узлах и деталях от прогрева ГТУ. Рост температур ведет к изменению линейных размеров лопаток, дисков, изменению зазоров в проточной части, тепловому расширению трубопроводов. При трогании ротора в первый момент не обеспечивается устойчивый гидравлический клин в смазочной системе. Идет процесс перехода роторов с рабочих колодок на установочные. Компрессор ГТУ близок к работе в зоне помпажа. Через нагнетатель осуществляется большой расход газа при низкой степени сжатия, что ведет к большим скоростям, особенно трубопроводов рециркуляции, что вызывает их вибрацию. В процессе запуска до выхода на режим «малого газа» валопроводы некоторых типов ГТУ проходят через обороты, совпадающие с частотой собственных колебаний, т.е. через резонансные обороты.

Пуск ГТУ осуществляется с помощью пусковых устройств. Для газоперекачивающих агрегатов (ГПА) применяются турбодетандеры, работающие в основном на перепаде давления природного газа, который предварительно очищается и редуцируется до необходимого давления. Турбодетандеры установлены на большинстве стационарных и некоторых авиационных ГПА. Иногда в качестве рабочего тела применяется сжатый воздух.

Кроме турбодетандера широкое применение нашли электростартеры, которые применяются на судовых ГПА. Ряд агрегатов оборудован системой гидравлического запуска. Мощность пусковых устройств составляет 0,3-3,0% мощности ГПА в зависимости от типа ГПА - авиационных или стационарных.

Рассмотрим типовой алгоритм автоматического запуска стационарного ГПА. При пуске ГПА можно выделить три этапа. На первом этапе раскрутка ротора осевого компрессора и турбины высокого давления происходит только благодаря работе пускового устройства.

На втором этапе раскрутка ротора турбокомпрессора производится совместно турбодетандером и турбиной. При достижении оборотов турбокомпрессора, достаточных для зажигания смеси 400-1000 об/мин, включается система зажигания и начинает осуществляться подача газа на дежурную горелку. О нормальном зажигании сигнализирует датчик - фотореле. Примерно через 1-2 мин после набора температуры примерно 150-200°С заканчивается первый этап прогрева, открывается регулирующий клапан на величину около 5% и начинается второй этап прогрева, который продолжается 10 мин. Затем происходит постепенное увеличение оборотов турбины высокого давления за счет открытия газорегулирующего клапана. При достижении оборотов примерно 50% от номинала турбина выходит на режим «самоходности». При выходе из зацепления муфты турбодетандера заканчивается второй этап раскрутки ротора. В этот момент для исключения провала частоты вращения ротора турбокомпрессора производится резкое открытие топливного регулирующего клапана на 2-3%.

На третьем этапе происходит дальнейший разгон ротора турбокомпрессора путем постепенного увеличения подачи газа в камеру сгорания. При этом закрываются антипомпажные клапаны осевого компрессора, турбоагрегат переходит работать с пусковых насосов на основные, приводимые во вращение уже от роторов агрегата. (А.Н.Козаченко. Эксплуатация компрессорных станций магистральных газопроводов. - М.: Изд-во «Нефть и газ», 1999, с.459).

Недостатки известного технического решения заключаются в скачке температур продуктов сгорания в турбине при завершении второго этапа пуска. Это приводит к существенным температурным напряжениям в узлах турбины, к задеваниям рабочих лопаток об элементы уплотнений радиальных зазоров и, как следствие, к снижению ресурса мощности и экономичности ГТУ.

Известны способы пуска ГТУ со свободной силовой турбиной путем раскрутки ротора турбокомпрессора ГТУ с помощью внешних пусковых двигателей (электродвигателей, паровых турбин, пневмостартеров, газотурбинных установок). (Стационарные газотурбинные установки: Справочник. / Под. ред. Л.В.Арсеньева и В.Г.Тырышкина. - Л.: Машиностроение, 1989, с.376-377).

Наиболее близким техническим решением к предлагаемому изобретению является способ пуска и газоснабжения энергетической установки по патенту РФ №2186224, который включает раскрутку жестко связанных роторов турбокомпрессора и дожимного компрессора топливного газа внешним пусковым двигателем (первый этап).

После достижения связанными роторами дожимного компрессора и турбокомпрессора пусковых оборотов открывают регулирующий клапан топливного газа, подают топливный газ в камеру сгорания и воспламеняют его запальником. Продукты сгорания проходят через газовую турбину ГТУ, раскручивая вышеупомянутые связанные роторы. По мере раскрутки связанных роторов при достижении так называемого режима «самоходности» производят отсоединение от пускового двигателя жестко связанных роторов турбокомпрессора и дожимного компрессора топливного газа при достижении ими расчетных оборотов (второй этап), а степень открытия регулирующего клапана топливного газа увеличивают, что повышает обороты роторов турбокомпрессора. Дальнейший вывод на рабочие обороты достигается за счет увеличения расхода и давления топливного газа (третий этап).

Этому техническому решению также присущи описанные выше недостатки, связанные со скачком температур при отсоединении пускового устройства.

Технической задачей предлагаемого изобретения является разработка способа пуска газотурбинной установки, позволяющего уменьшить дисбаланс мощности при отключении пускового устройства не за счет увеличения расхода топлива при пуске ГТУ. Этот дисбаланс мощности проявляется в провале частоты вращения вала турбины с одновременным значительным скачком температуры перед ней.

Технический результат достигается за счет того, что в известное устройство, содержащее внешнее пусковое устройство (турбодетандер), жестко соединенный через автоматическую сцепную муфту с валом турбокомпрессора, включающего компрессор, турбину и камеру сгорания, снабженную топливно-регулирующим клапаном, который на первом этапе пуска закрыт, а на втором - приоткрывается, с увеличением степени его открытия на третьем этапе пуска, внесены изменения, позволяющие изменить алгоритм пуска ГТУ, а именно;

На выходе осевого компрессора устанавливается сбросный клапан, соединенный с входом камеры сгорания:

Пуск ГТУ на первом и втором этапах осуществляется при открытом сбросном клапане;

При достижении режима «самоходности» перед отключением детандера сбросный клапан закрывают.

В результате появляющегося при этом дополнительного расхода воздуха через турбину уменьшается дисбаланс мощности, возникающий при отключении детандера, при этом увеличение расхода воздуха через камеру сгорания при подрыве топливного регулирующего клапана (ТРК) приводит к существенному снижению скачка температуры перед турбодвигателем.

На фиг.1 показана схема, реализующая предлагаемый способ пуска ГТУ, а на фиг.2 приведен график пуска ГТУ по прототипу и по предлагаемому изобретению.

Основными элементами схемы являются: 1 - внешний пусковой двигатель (детандер); 2 - расцепная муфта; 3 - осевой компрессор; 4 - регулирующий клапан топливного газа; 5 - приводная газовая турбина; 6 - сбросный клапан; 7 - камера сгорания; 8 - силовая газовая турбина; 9 - нагрузка; 10 - система автоматического управлений (САУ).

Предлагаемый способ пуска ГТУ осуществляется автоматически по командам САУ следующим образом. Внешним пусковым двигателем 1 раскручивают через расцепную муфту 2 жестко связанные валы осевого компрессора 3 и приводной газовой турбины 5. Регулирующий клапан топливного газа 4 при этом закрыт, а сбросный клапан 6 открыт.Воздух, проходя через камеру сгорания 7, поступает в приводную турбину, раскручивая вышеупомянутые связные валы за счет расширения газа. При достижении связанными роторами пусковых оборотов приоткрывают топливно-регулирующий клапан 4, а при достижении режима «самоходности» сбросной клапан закрывают, при этом расцепной муфтой 2 автоматически отсоединяется ротор пускового двигателя 1 от связанных роторов осевого компрессора 3 и приводной газовой турбины 5, а степень открытия топливно-регулирующего клапана увеличивают.

Рассмотренный способ пуска может быть применен для любой ГТУ, где используется пусковой турбодетандер.

На фиг.2 показаны пусковые характеристики газотурбинной установки ГТК-10 при алгоритме пуска по прототипу (известному) и по предлагаемому алгоритму.

Из анализа графиков на фиг.2 можно сделать вывод о том, что после отключения пускового турбодетандера (при частоте вращения 2600-2800 об/ мин - режим «самоходности») провал частоты вращения ротора турбокомпрессора уменьшился с 300 об/мин до 50 об/мин, т.е. в 6 раз, а скачок температуры продуктов сгорания при этом снизился на 50°С, т.е. в два раза.

Таким образом, предлагаемый алгоритм пуска ГТУ позволяет значительно уменьшить провалы частоты вращения вала турбокомпрессора и скачок температуры продуктов сгорания в турбине, что, в свою очередь, обеспечивает увеличение ресурса ГТУ и снижение расхода топлива.

Внедрение предлагаемого алгоритма пуска ГТУ было осуществлено в июле 2007 г. на газоперекачивающем агрегате (ГПА) ГТНР-16 и планируется к внедрению на ГПА ГТК-10.

Способ пуска энергетической газотурбинной установки, включающий три этапа, причем на первом и втором этапах осуществляют раскрутку жестко связанных роторов турбокомпрессора внешним пусковым устройством, например, детандером, жестко соединенным через автоматическую сцепную муфту с валом турбокомпрессора, включающего компрессор, турбину и камеру сгорания, снабженную топливно-регулирующим клапаном, закрытым на первом этапе пуска и приоткрытом на втором, отсоединение от пускового устройства жестко связанных роторов компрессора и турбины при достижении ими расчетных оборотов и вывод их на рабочие обороты на третьем этапе за счет увеличения расхода и давления топливного газа, отличающийся тем, что на выходе осевого компрессора устанавливают сбросный клапан, соединенный с входом камеры сгорания, причем пуск газотурбинной установки на первом и втором этапах осуществляют при открытом сбросном клапане, а перед отсоединением пускового устройства закрывают сбросный клапан.

Глава 11 Особенности пуска ГТУ

Статический преобразователь частоты (СПЧ)

Общие сведения

Статический преобразователь частоты (СПЧ) используется для раскручивания вала газовой турбины, для этого он подает на генератор питание с переменной частотой, пониженным напряжением и пониженным возбуждением.

Процедура запуска газовой турбины выполняется полностью автоматически. Генератор используется в "двигательном" режиме и во время цикла пуска разгоняет вал до определенной процентной доли от номинальной скорости.

После достижения этой определенной процентной доли от номинальной скорости СПЧ отключается и газовая турбина затем самостоятельно разгоняется до 100% от номинальной скорости.

При 100% номинальной скорости генератор вырабатывает номинальное напряжение и готов для выполнения последовательности синхронизации с энергосистемой.

Помимо функции пуска, СПЧ также используется для разгона блока до определенной скорости во время цикла промывки.

Оборудование системы пуска

Оборудование системы пуска расположено в корпусе, который обычно расположен рядом с отсеком генератора. Корпус пригоден для установки вне помещения в указанных климатических условиях площадки. Предусмотрены системы отопления, кондиционирования воздуха, освещения и вспомогательные силовые розетки для защиты оборудования, размещенного внутри корпуса.

Ниже перечислено основные узлы оборудования этой системы:

· Один (1) отсек мониторинга и управления

· Один (1) реактор звена постоянного тока

· Один (1) расположенный вне основания выключатель со стороны агрегата

· Измерительные и защитные устройства (трансформаторы напряжения VT и тока CT)

· Один (1) автоматический выключатель со стороны трансформатора СПЧ

Основной принцип работы

Пусковой статический преобразователь напряжения питается от трансформатор преобразования напряжения.

Пусковой СПЧ - это косвенный преобразователь частоты, работающий как инвертор с естественной коммутацией, он состоит из трех основных узлов:

· Один (1) тиристорный мост выпрямителя (сетевой мост), питающийся от трансформатора преобразования напряжения.

· Один (1) тиристорный мост инвертора (мост агрегата), подключенный к генератору через разъединяющий выключатель.

· Одна (1) промежуточная цепь звена постоянного тока, реактор которой обеспечивает развязку между мостами сети и агрегата.

В предлагаемую систему входит генератор импульсов для запуска. Асинхронный контроль выполняется полностью за счет обработки сигналов, снимаемых с синхронного пускового электродвигателя с помощью трансформаторов напряжения.

При работе в двигательном режиме на обмотку ротора генератора подается постоянный ток от системы, в которую входят:

· Тиристорный мост, используемый для работы в режиме генератора

· Автоматическая система, которая подает в обмотку возбуждения ротора постоянный ток с помощью контактных колец и щеток. Щетки прижимаются к кольцам в начале последовательности пуска или цикла промывки и поднимаются над кольцами в конце последовательности или цикла.

Функции

Пусковой СПЧ предназначен для выполнения следующих функций:

· Пуск турбины: Валоповоротное устройство создает начальный момент проворачивания на оси вала; затем СПЧ разгоняет вал газовой турбины до скорости самоходности.

· Промывка (с разборкой компрессора): Во время этой последовательности СПЧ вращает газовую турбину с низкой постоянной скоростью.

Описание и элементы конструкции

Полный комплект оборудования устанавливается внутри корпуса (шкафа) с кондиционируемым воздухом, пригодного для установки вне помещения.

Внутри шкафа можно условно выделить две различные группы оборудования:

· Силовое оборудование

· Вспомогательное и управляющее оборудование

Силовое оборудование

Сглаживающий реактор звена постоянного тока и силовой тиристорный модуль являются "силовыми" узлами СПЧ.

В модуль силового тиристора сети/агрегата входят тиристорные плечи моста, их защитные системы, подключения и измерительные приборы (трансформаторы тока, трансформаторы напряжения).

Сглаживающий реактор звена постоянного тока обычно изготавливается с железным сердечником с воздушным охлаждением, оснащенным датчиком максимальной температуры. Реактор выполняет функцию ограничения волн тока в промежуточной цепи непрерывного тока.

Для соединения цепи СПЧ и статора генератора имеется один трехполюсный разъединительный выключатель с двигательным приводом. Разъединитель оснащен заземляющим устройством со стороны СПЧ.

Внутри шкафа с оборудованием установлен один трехполюсный автоматический выключатель для подключения цепи СПЧ к трансформатору СПЧ.

Вспомогательное и управляющее оборудование

Функции управления и защиты СПЧ выполняются с помощью всех необходимых команд, сигналов, аварийной сигнализации, приборов и вспомогательных цепей, которые предусмотрены в блоке. Вспомогательные цепи собраны из преобразователей, релейной логики, схем ПЛК и интерфейсных плат.

Система управления выполняет следующие основные функции:

· Фазовращатель преобразователя неизменной частоты со стороны сети

· Фазовращатель преобразователя переменной частоты со стороны агрегата (в двух рабочих режимах: импульсный режим и режим естественной коммутации)

· Регулятор скорости с внутренним контуром регулятора тока

· Управление углом запуска преобразователя переменной частоты

· Логика работы (ПЛК)

· Интерфейс преобразователя (генератор импульсов открывания тиристоров, опрос сигналов с трансформаторов напряжения и тока)

· Интерфейс обмотки возбуждения

· Диагностика и интерфейс пользователя.

Технические характеристики СПЧ - общие параметры

· Действующие стандарты: IEC, IEEE

· Номинальная пусковая мощность: 2250 кВт

· Выпрямитель:

Количество: 1

Входное напряжение при холостом ходе: 1550 Вольт

· Инвертор:

Количество: 1

Выходное напряжение: 0 – 1450 В

· Сглаживающий реактор

Количество: 1

Тип: Сухой реактор с железным сердечником

· Тип управления: Микропроцессорное

· Вид установки: в контейнере

Топливная система. Топливом для судовых ГТУ служат мазут, дизельное топливо и керосин. В период запуска и остановки ис­пользуется легкое, менее вязкое топливо, устраняющее засорение фильтров и закоксовывание форсунок. Для улучшения процесса сжигания тяжелых сортов топлива (мазута) и устранения образо­вания отложений в газовом тракте турбины к топливу добавляют специальные присадки.

На рис. 118 показана принципиальная схема топливной си­стемы газотурбинной установки. В период запуска пусковой элек­тронасос 17 подает пусковое топливо из цистерны 1 через фильтр грубой очистки 18 к пусковой форсунке 14. По достижении устой­чивого горения пусковой форсунки в работу включается главный топливный насос 8 при закрытом кране 6 и открытом кране 9. Главный топливный насос направляет пусковое топливо к топлив­ному агрегату 10 рабочих форсунок 13. Перед поступлением к фор­сункам топливо проходит сетчатый фильтр 11 и стоп-кран 12. Топливоперекачивающий насос 16 подает пусковое топливо через тиливоподогреватель 15 и сетчатый фильтр 7 к главному топлив­ному насосу.

Одновременно в системе основного топлива идет подогрев мазута до требуемой температуры (порядка 393° К) для уменьшения его вязкости; при этом работает рециркуляционный контур основ­ного топлива: мазут из расходной цистерны 2 , пройдя щелевые фильтры 3 грубой очистки, подкачивающим насосом 4 через по­догреватель 5 и кран 6 возвращается обратно в расходную ци­стерну. Когда мазут достигнет требуемой температуры, кран 6 переводится в положение подвода мазута к рабочим форсун­кам 13, а кран 9 перекрывается, и пусковое топливо перекачива­ется обратно в запасную цистерну 1 .

Масляная система. Масляная система судовых ГТУ, как и па­ротурбинных, может быть циркуляционной или гравитационной напорной. К смазочным маслам судовых ГТУ предъявляются бо­лее повышенные требования, чем к маслам паротурбинных уста­новок. Масла не только должны обладать высокими смазочными, противоизносными и противокоррозионными свойствами, но также быть устойчивыми к образованию отложений, иметь высокую температуру вспышки, не ниже 473° К, так как у некоторых ГТУ температура подшипников достигает 423-443° К.

Система охлаждения. Система охлаждения газовых турбин может быть водяной и воздушной.

На рис. 119 показана принципи­альная схема воздушно-водяного охлаждения ГТУ судна «Париж­ская коммуна». Корпус турбины высокого давления 2 охлажда­ется дистиллированной водой, подаваемой центробежным насо­сом 5 через спаренный фильтр 6. После охлаждения корпуса ТВД дистиллированная вода через поверхностный водоохладитель 7 воз­вращается в цистерну 4. Охлаждение дисков турбины низкого дав­ления 1 производится воздухом, который отбирается из промежу­точной ступени компрессора 3 , а охлаждение диска турбины вы­сокого давления 2 - воздухом, отбираемым из последней ступени компрессора.

Реверсивные устройства ГТУ. Реверс в ГТУ может быть осу­ществлен с помощью ТЗХ, винтов регулируемого шага (ВРШ), гидрореверсивных устройств, электропередач и реверсивно-планетарных передач. Однако в трубокомпрессорных ГТУ в связи со значительным конечным давлением газа (около 1 бара), а следо­вательно ростом потерь мощности на вращение турбин обратного хода и сложностью конструкций переключающего устройства ТЗХ не нашла широкого применения. В ГТУ с СПГГ объемный расход газа и его температура перед турбиной значительно меньше, чем в турбокомпрессорных ГТУ, и это уменьшает размеры переклю­чающих органов. Для осуществления реверса в ГТУ с СПГГ при­меняют ТЗХ.

Применение ВРШ повышает маневренность судна, упрощает ГТУ и улучшает ее работу на нерасчетных режимах.

Гидрореверсивные устройства и реверсивно-планетарные пере­дачи обладают компактностью, малым весом и хорошими манев­ренными характеристиками. Этот тип реверсивных устройств для установок большой мощности находится в стадии освоения.

Электропередача, обладая хорошими маневренными качест­вами, имеет значительные (для судов) весо-габаритные показатели и невысокий к. п. д.

Система управления и защиты . Эта система предназначена: для управления газотурбинной установкой при запуске, маневрах и остановке; для предупреждения аварийных состояний установки и ее защиты при превышении предельной частоты вращения или осевого сдвига роторов установки, падении давления масла и пресной воды в системах смазки и охлаждения ниже допустимых, изменениях рабочей температуры газового потока (повышение температуры, срыв факела в камере сгорания).

Управление ГТУ при запуске осуществляется путем последо­вательного включения и выключения пусковых устройств, а на рабочих режимах изменением подачи топлива в камеру сгорания, открытием клапанов перепуска газа в выпускной газоход и откры­тием заслонок противопомпажного устройства компрессора. Управ­ление всеми этими операциями осуществляется дистанционно с пульта управления или с мостика. При выходе из строя автома­тического дистанционного управления предусматривается ручное управление. Система защиты снабжается аварийно-предупреди­тельной и информационной сигнализацией, при срабатывании ко­торой зажигаются лампочки и включается звуковой сигнал.

На рис. 120 показана упрощенная схема управления ГТУ с ВРШ. К форсункам камеры сгорания 2 очищенное тяжелое топливо подается топливным насосом 12 через главный регулирую­щий орган 9, который определяет режим работы установки. Пе­ремещение регулирующего органа 9 осуществляется с поста управления поворотом маховика 5 через кулачок 6 и пружину 4. Постоянный перепад давления масла на регулирующем органе под­держивается регулятором 3, а скорость его перемещения ограни­чивается регулятором приемистости 11. Подвод пускового дизель­ного топлива осуществляется регулятором подачи 10. Сервомо­тор 1 и золотник 13 обеспечивают перекладку лопастей ВРШ. Угол поворота лопастей винта задают поворотом маховика 5 через сельсин-датчик 7 и сельсип-приемпик 14, которые связаны элек­трически в следящую систему. Аварийный поворот лопастей ВРШ производят ручным приводом 8.

Загрузка...