ecosmak.ru

Архитектура и принципы работы компьютера. Что такое архитектура компьютера

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Государственное бюджетное образовательное учреждение

Среднего профессионального образования

Ростовской области

«Ростовский строительный колледж»

на тему: «Архитектура ПК»

Работу выполнила:

Студентка группы А-21

Павлова Н.В.

Ростов-на-Дону 2014

Введение

1. Понятие персональный компьютер

2. Понятие архитектуры персонального компьютера

3. Внутренние устройства персонального компьютера

4. Внешние устройства персонального компьютера

Введение компьютер микропроцессор логический

Бурное развитие информационных технологий и их основной технической базы - компьютеров, приводит к большему насыщению ими практически всех сфер деятельности человека. В этих условиях для студента необходимо знание основ аппаратной части компьютера, его основных технических характеристик и функциональных возможностей. Такое знание дает возможность более осознанно осуществлять выбор, организовывать обслуживание, модернизацию персональных компьютеров, планировать развитие компьютера как для личного пользования так и для профессионального использования, что является наиболее актуальным.

Компьютер представляет собой программируемое электронное устройство, способное обрабатывать данные и производить вычисления, а также выполнять другие задачи манипулирования символами.

Компьютер - это многофункциональное электронное устройство для накопления, обработки и передачи информации

Архитектура персонального компьютера -- компоновка его основных частей, таких как процессор, ОЗУ, видеоподсистема, дисковая система, периферийные устройства и устройства ввода-вывода.

Архитектура ПК определяет принцип действия, информационные связи и взаимное соединение основных логических узлов компьютера:

Центрального процессора;

Основной памяти;

Внешней памяти;

Периферийных устройств.

1. Внутренние устройства компьютера

v Самым главным элементом в компьютере, его "мозгом" является микропроцессор. Микропроцессор - это электронная схема, выполняющая все функции обработки информации и управление всеми блоками ЭВМ. Конструктивно представляет собой один кристалл 4-6 см2.

В состав микропроцессора входят следующие блоки:

1. Арифметико-логическое устройство (АЛУ) - это устройство, выполняющее логические и арифметические операции в двоичной системе исчисления.

2. Память микропроцессора - это память регистров, в которых хранятся данные и их адреса

3. Кэш память - быстрая память повышает производительность работы микропроцессора за счет буферизации часто используемых команд

4. Управляющее устройство (УУ) - это устройство обеспечивает режим многозадачности, который способствует организации работы ЭВМ, при которой в её памяти одновременно содержатся программы и данные для решения нескольких задач. Многозадачность осуществляется за счет системы прерываний и защиты памяти

5. Магистраль микропроцессора - она предназначена для обмена информации между блоками микропроцессора.

Интерфейсная система микропроцессора - реализует сопряжение и связь с другими устройствами ПК; включает в себя внутренний интерфейс МП, буферные запоминающие регистры и схемы управления портами ввода-вывода (ПВВ) и системной шиной.

v Также в компьютере важную роль играет запоминающее устройство

Запоминающее устройство - это блок ЭВМ, предназначенный для временного (оперативная память) и продолжительного (постоянная память) хранения программ, входных и результирующих данных, а также промежуточных результатов.

Виды ЗПУ:

1. ОЗУ (оперативная память) - это быстро действующее запоминающее устройство, сравнительно небольшого объема, в котором хранится выполняемая в текущий момент программа и ее данные.

2. Кэш память - это сверхбыстрая память, предназначенная для хранения промежуточных результатов.

3. ПЗУ (постоянная память) - это память предназначена для хранения системных и вспомогательных программ (Bios), она энергонезависима, но скорость обмена данными в подавляющем большинстве случаев, значительно меньше.

v Шина - системная плата, обеспечивающая ввод-вывод информации. Характеристикой шины является скорость обмена. Основные типы шин (расположены в порядке улучшения характеристик): ISA, EISA, VESA, PCI, AGP. Разъёмы-"слоты" стандарта PCI родился он около 10 лет назад и сегодня является основным стандартом слотов для подключения дополнительных устройств.

Системная шина включает в себя:

кодовую шину данных (КШД), содержащую провода и схемы сопряжения для параллельной передачи всех разрядов числового кода (машинного слова) операнда;

кодовую шину адреса (КША), включающую провода и схемы сопряжения для параллельной передачи всех разрядов кода адреса ячейки основной памяти или порта ввода-вывода внешнего устройства;

кодовую шину инструкций (КШИ), содержащую провода и схемы сопряжения для передачи инструкций (управляющих сигналов, импульсов) во все блоки машины;

шину питания, имеющую провода и схемы сопряжения для подключения блоков ПК к системе энергопитания.

Системная шина обеспечивает три направления передачи информации:

Между микропроцессором и основной памятью;

Между микропроцессором и портами ввода-вывода внешних устройств;

Между основной памятью и портами ввода-вывода внешних устройств (в режиме прямого доступа к памяти)

v Жесткий диск (винчестер, HDD) - предназначен для постоянного хранения информации, используемой при работе компьютера: операционной системы, документов, игр и т.д. Основными характеристиками жесткого диска являются его емкость, измеряемая в гигабайтах (Гб), скорость чтения данных, среднее время доступа, размер кэш-памяти. Информация хранится на одной или нескольких круглых пластинках с магнитным слоем, над которыми летают магнитные записывающие головки. Винчестеры подключаются к материнской плате с помощью специальных шлейфов-кабелей, каждый из которых рассчитан на два устройства.

v Устройство для чтения компакт-дисков (CD-ROM) предназначено для чтения записей на компакт-дисках. Достоинства устройства - большая емкость дисков, быстрый доступ, надежность, универсальность, низкая стоимость. Основное понятие, характеризующее работу данного устройства - скорость. Самые первые CD-ROM - 1-скоростные. Сейчас появились 52-скоростные CD-ROM. Что значит 52 скоростной привод? Это значит, что он читает данные в 52 раза быстрее самого первого 1 скоростного (150 Кб/с) CD-ROM. Следовательно, 52 умножаем на 150… 7800 килобайт в секунду! Главный недостаток стандартных дисководов CD-ROM - не возможность записи информации.

Для этого необходимы другие устройства:

CD-R - дисковод с возможностью однократной записи информации на специальный диск, в России их называют "болванками". Запись на эти диски осуществляется благодаря наличию на них особого светочувствительного слоя, выгорающего под воздействием высокотемпературного лазерного луча.

CD-RW - дисковод с возможностью многократной записи информации. Это устройство работает совершенно по другому принципу и совсем другими дисками, чем CD-R.

В последнее время всё большее распространение получает DVD-ROM - устройство, предназначенное для чтения дисков формата DVD.

v BIOS (Basic Input - Output System) - базовая система ввода-вывода - микросхема, установленная на материнской плате. Именно здесь хранятся основные настройки компьютера. С помощью BIOS можно изменить скорость работы процессора, параметры работы для других внутренних и некоторых внешних устройств компьютера. BIOS - это первый и самый важный из мостиков, связующий между собой аппаратную и программную часть компьютера. Поэтому для современных BIOS немало важными особенностями является возможность её обновления, работы со стандартом Plag&Play возможность загрузки компьютера с CD-ROM, сети и дисководов ZIP.

v Источник питания. Это блок, содержащий системы автономного и сетевого энергопитания ПК.

v Таймер. Это внутримашинные электронные часы, обеспечивающие при необходимости автоматический съем текущего момента времени (год, месяц, часы, минуты, секунды и доли секунд). Таймер подключается к автономному источнику питания - аккумулятору и при отключение машины от сети продолжает работать.

2. Внешние устройства компьютера

v Клавиатура - устройство, предназначенное для ввода в компьютер информации от пользователя. Современная клавиатура состоит из 104 укреплённых в едином корпусе клавиш.

v Мышь - манипулятор для ввода информации в компьютер. Он необходим для работы с графическими пакетами, чертежами, при разработке схем и при работе в новых операционных системах.

v Джойстик - манипулятор в виде укрепленной на шарнире ручки с кнопками, употребляется в компьютерных играх.

v Монитор (дисплей) - устройство, предназначенное для вывода на экран текстовой и графической информации.

v Принтер - устройство, предназначенное для вывода текстовой и графической информации на бумагу. Различают матричные, струйные и лазерные принтеры (расположены в порядке улучшения качества и скорости печати). Принтеры бывают цветные (струйные и лазерные) и черно-белые (матричные и лазерные).

v Сканер - устройство для ввода в компьютер текстовой и графической информации. Сканеры бывают ручные, настольные планшетные и даже напольные.

v Плоттер - устройство, позволяющее выводить графическую информацию на бумагу или другие носители. Типовые задачи для плоттеров - выполнение различных чертежей, схем, рисунков, графиков, карт и т.п.

v Модем (модулятор-демодулятор)- устройство, позволяющее компьютеру выходить на связь с другим компьютером посредством телефонных линий. По своему внешнему виду и месту установки модемы подразделяются на внутренние (internal) и внешние (external). Внутренние модемы представляют собой электронную плату, устанавливаемую непосредственно в компьютер, а внешние - автономное устройство, подсоединяемое к одному из портов. Внешний модем стоит дороже внутреннего того же типа из-за внешней привлекательности и более легкой установки. Основной параметр в работе модема - скорость передачи данных.

Заключение

Развитие электронной промышленности и компьютеростроения осуществляется такими быстрыми темпами, что буквально через 1-2 года, сегодняшнее " чудо техники" становится морально устаревшим. Однако принципы устройства компьютера остаются неизменными еще с того момента как знаменитый математик Джон фон Нейман в 1945 году подготовил доклад об устройстве и функционировании универсальных вычислительных устройств, т.е. компьютеров.

1. https://ru.wikipedia.org/wiki

2. http://imcs.dvfu.ru/lib/eastprog/architecture.html

3. http://rechkate.ru/informatika/arhitektura-pk

4. http://www.lessons-tva.info/edu/e-inf1/e-inf1-2-2.html

5. http://wiki.kem-edu.ru/index.php

Размещено на Allbest.ru

...

Подобные документы

    Классическая архитектура компьютера. Понятие разрядной сетки. Устройство ввода-вывода. Арифметическо-логическое устройство, структура регистров АЛУ, куда помещаются исходные и результирующие данные, а также размер регистров (число двоичных разрядов t).

    презентация , добавлен 29.11.2013

    Архитектура современного персонального компьютера. Виды и характеристики центральных и внешних устройств ЭВМ. Структурная и функциональная схемы персонального компьютера. Устройства для ввода информации в системный блок и для отображения информации.

    курсовая работа , добавлен 18.01.2012

    История создания вычислительной техники. Организация вычислительного устройства ("архитектура фон Неймана"). Устройства ввода информации, ее обработки, хранения и вывода. Мониторы общего и профессионального назначения, их сравнительная характеристика.

    реферат , добавлен 25.11.2009

    Магистрально-модульный принцип построения компьютера. Магистральный (шинный) принцип обмена информацией между устройствами. Внутреннее устройство персонального компьютера: состав и назначение основных блоков. Устройства ввода и вывода информации.

    реферат , добавлен 19.11.2009

    Фактор программного управления компьютером. Магистрально-модульный принцип построения. Джойстик - устройство-манипулятор для ввода информации о движениях руки. Состав системного блока. Устройства для вывода информации из памяти компьютера к пользователю.

    презентация , добавлен 23.02.2015

    Сферы применения персонального компьютера (ПК). Основные блоки ПК, способы компьютерной обработки информации. Устройства ввода и вывода, хранения информации: системный блок, клавиатура, монитор, мышь, сканер, дигитайзер, принтер, дисковый накопитель.

    презентация , добавлен 25.02.2011

    Основные части персонального компьютера: системный блок, устройства ввода и вывода информации. Основные элементы системного блока: материнская плата, процессор, оперативная память, кэш-память, накопители. Операционная система, объекты Windows, окна.

    реферат , добавлен 21.09.2009

    Описание, характеристика и принципы работы основных компонентов современного персонального компьютера. Принципы адрестности, однородности памяти и принцип программного управления. Периферийные устройства ввода информации. Центральные элементы.

    реферат , добавлен 07.11.2008

    Устройство персонального компьютера: системный блок, система охлаждения, материнская плата, процессор, видеокарта, звуковая карта. Память, устройство хранения информации. Устройство ноутбука Asus N53SM: клавиатура и тачпад, технические характеристики.

    реферат , добавлен 05.12.2012

    Сущность компьютера как своеобразного вычислителя. Характеристика микропроцессора – главного элемента компьютера, его электронной схемы, выполняющей все вычисления и обработку информации. История компьютерной техники. Работа звуковой карты, клавиатуры.

Архитектура персонального компьютера (ПК) включает в себя структуру, которая отражает состав ПК, и программное обеспечение.

– это набор его функциональных элементов (от основных логических узлов до простейших схем) и связей между ними.

Архитектура определяет принципы действия , информационные связи и взаимное соединение основных логических узлов ПК, к которым относят процессор, оперативное запоминающее устройство, внешние запоминающие устройства и периферийные устройства.

Основным принципом построения всех современных ПК является программное управление.

Классическая архитектура фон Неймана

В $1946$ году американские математики Джон фон Нейман , Герман Голдштейн и Артур Бёркс в совместной статье изложили новые принципы построения и функционирования ЭВМ. На основе этих принципов производилось $1$-е и $2$-е поколение компьютеров. В следующих поколениях происходили некоторые изменения, но принципы фон Неймана (как они были названы) сохранялись.

Основные принципы фон Неймана:

  1. Использование двоичной системы счисления в ПК , в которой устройствам гораздо проще выполнять арифметико-логические операции, чем в десятичной.
  2. Программное управление ПК . Работа ПК управляется программой, которая состоит из набора команд, выполняющихся последовательно одна за другой. Создание машины с хранимой в памяти программой положило начало программированию.
  3. Данные и программы хранятся в памяти ПК . Команды и данные кодируются одинаково в двоичной системе.
  4. Ячейки памяти ПК имеют последовательно пронумерованные адреса. Возможность обращения к любой ячейке памяти по ее адресу позволила использовать переменные в программировании.
  5. Возможность условного перехода при выполнении программы. Команды в ПК выполняются последовательно, но при необходимости можно реализовать переход к любой части кода.

Основным принципом было то, что программа уже стала не постоянной частью машины, а изменяемой, в отличие от аппаратуры, которая остается неизменной и очень простой.

Фон Нейманом также была предложена структура ПК (рис. 1).

Рисунок 1. Структура ПК

В состав машины фон Неймана входили:

  • запоминающее устройство (ЗУ);
  • арифметико-логическое устройство (АЛУ), которое выполняло все арифметические и логические операции;
  • устройство управления (УУ), которое координирует действия всех узлов машины в соответствии с программой;
  • устройства ввода-вывода.

Программы и данные вводились в ЗУ из устройства ввода через АЛУ. Все команды программы записывались в ячейки памяти последовательно, а данные для обработки – в произвольные ячейки.

Команда состояла из указания операции, которую необходимо выполнить, и адресов ячеек памяти, в которых хранятся данные и над которыми необходимо выполнить нужную операцию, а также адреса ячейки, в которую необходимо записать результат (для хранения в ЗУ).

Из АЛУ результаты выводятся в ЗУ или устройство вывода. Принципиально эти устройства отличаются тем, что в ЗУ данные хранятся в удобном для обработки ПК виде, а на устройства вывода (монитор, принтер и т.п.) в удобном для человека.

От УУ на другие устройства поступают сигналы с командами, а от других устройств УУ получает информацию о результате их выполнения.

В УУ содержится специальный регистр (ячейка) – счетчик команд , в который записывается адрес первой команды программы. УУ считывает из памяти содержимое соответствующей ячейки памяти и помещает его в специальное устройство – регистр команд . УУ определяет операцию команды, «отмечает» в памяти данные, адреса которых указаны в команде, и контролирует выполнение команды. Операцию выполняет АЛУ или аппаратные средства компьютера.

После выполнения команды счетчик команд увеличивается на $1$ и указывает на следующую команду программы. При необходимости выполнения команды, которая не следует по порядку за текущей, специальная команда перехода содержит адрес ячейки, в которую нужно передать управление.

Архитектура современных ПК

В основу архитектуры современных ПК заложен магистрально-модульный принцип . ПК состоит из отдельных частей – модулей, которые являются относительно самостоятельными устройствами ПК (напрмер, процессор, оперативная память, контроллер, дисплей, принтер, сканер и т.д.).

Модульный принцип позволяет пользователю самостоятельно комплектовать необходимую конфигурацию ПК и производить при необходимости его обновление. Модульная организация системы опирается на магистральный принцип обмена информацией. Для работы ПК как единого механизма необходимо осуществлять обмен данными между различными устройствами, за что отвечает системная (магистральная) шина , которая выполняется в виде печатного мостика на материнской плате.

Основные особенности архитектуры ПК сводятся к принципам компоновки аппаратуры, а также к выбранному набору системных аппаратных средств.

Подобная архитектура характеризуется ее открытостью – возможностью включения в ПК дополнительных устройств (системных и периферийных), а также возможностью простого встраивания программ пользователя на любом уровне программного обеспечения ПК.

Замечание 1

Также совершенствование архитектуры ПК связано с максимальным ускорением обмена информацией с системной памятью. Именно из системной памяти, в которой хранятся данные, ПК считывает все исполняемые команды. Таким образом больше всего обращений центральный процессор совершает к памяти и ускорение обмена с памятью приведет к существенному ускорению работы всей системы в целом.

Т.к. при использовании системной магистрали для обмена процессора с памятью приходится учитывать скоростные ограничения самой магистрали, то существенного ускорения обмена данными с помощью магистрали добиться невозможно.

Для решения этого вопроса был предложен следующий подход. Системная память вместо системной магистрали подключается к специальной высокоскоростной шине, которая дистанционно находится ближе к процессору и не требует сложных буферов и больших расстояний. В этом случае обмен с памятью идет с максимально возможной для процессора скоростью, и системная магистраль не замедляет его. Особенно актуальным это решение стало с ростом быстродействия процессора.

Таким образом, структура ПК из одношинной, которая применялась только в первых компьютерах, становится трехшинной .

Рисунок 2. Трехшинная структура ПК

АЛУ и УУ в современных ПК образуют процессор. Процессор, который состоит из одной или нескольких больших интегральных схем, называется микропроцессором или микропроцессорным комплектом.

Многопроцессорная архитектура ПК

Наличие в ПК нескольких процессоров означает, что параллельно может быть организовано много потоков данных и команд , т.е. одновременно могут выполняться несколько фрагментов одной задачи.

Рисунок 3. Архитектура многопроцессорного ПК

Многомашинная вычислительная система

В архитектуре многомашинной вычислительной системы каждый процессор имеет свою оперативную память. Применение многомашинной вычислительной системы эффективно при решении задач, которые имеют очень специальную структуру, которая должна состоять из такого количества ПК, на сколько слабо связанных подзадач разбита система.

Многопроцессорные и многомашинные вычислительные системы имеют преимущество перед однопроцессорными в быстродействии.

Архитектура с параллельными процессорами

В данной архитектуре несколько АЛУ работают под управлением одного УУ. Это означает, что множество данных может обрабатываться по одной программе, т. е. по одному потоку команд. Высокое быстродействие такой архитектуры можно получить только на задачах, в которых одинаковые вычислительные операции выполняются одновременно на различных однотипных наборах данных.

Рисунок 4. Архитектура с параллельным процессором

В современных машинах часто присутствуют элементы различных типов архитектурных решений. Существуют и другие архитектурные решения, отличные от рассмотренных выше.

Основной принцип построения ЭВМ носит название архитектуры фон Неймана - американского ученого венгерского происхождения Джона фон Неймана, который ее предложил.

Современную архитектуру компьютера определяют следующие принципы:

    Принцип программного управления. Обеспечивает автоматизацию процесса вычислений на ЭВМ. Согласно этому принципу, для решения каждой задачи составляется программа, которая определяет последовательность действий компьютера. Эффективность программного управления будет выше при решении задачи этой же программой много раз (хотя и с разными начальными данными).

    Принцип программы, сохраняемой в памяти. Согласно этому принципу, команды программы подаются, как и данные, в виде чисел и обрабатываются так же, как и числа, а сама программа перед выполнением загружается в оперативную память, что ускоряет процесс ее выполнения.

    Принцип произвольного доступа к памяти. В соответствии с этим принципом, элементы программ и данных могут записываться в произвольное место оперативной памяти, что позволяет обратиться по любому заданному адресу (к конкретному участку памяти) без просмотра предыдущих.

На основании этих принципов можно утверждать, что современный компьютер - техническое устройство, которое после ввода в память начальных данных в виде цифровых кодов и программы их обработки, выраженной тоже цифровыми кодами, способно автоматически осуществить вычислительный процесс, заданный программой, и выдать готовые результаты решения задачи в форме, пригодной для восприятия человеком.

Персональный компьютер типа IBM PC имеет довольно традиционную архитектуру микропроцессорной системы и содержит все обычные функциональные узлы: процессор, постоянную и оперативную память, устройства ввода/вывода, системную шину, источник питания.

Основные особенности архитектуры персональных компьютеров сводятся к принципам компоновки аппаратуры, а также к выбранному набору системных аппаратных средств.

Основные узлы компьютера следующие:

Центральный процессор - это микропроцессор со всеми необходимыми вспомогательными микросхемами, включая внешнюю кэш-память и контроллер системной шины. (О кэш-памяти подробнее будет рассказано в следующих разделах). В большинстве случаев именно центральный процессор осуществляет обмен по системной шине.

Оперативная память может занимать почти все адресуемое пространство памяти процессора. Однако чаще всего ее объем гораздо меньше. В современных персональных компьютерах стандартный объем системной памяти составляет, как правило, от 64 до 512 Мбайт. Оперативная память компьютера выполняется на микросхемах динамической памяти и поэтому требует регенерации.

Постоянная память (ROM BIOS - Base Input/Output System) имеет небольшой объем (до 64 Кбайт), содержит программу начального запуска, описание конфигурации системы, а также драйверы (программы нижнего уровня) для взаимодействия с системными устройствами.

Контроллер прерываний преобразует аппаратные прерывания системной магистрали в аппаратные прерывания процессора и задает адреса векторов прерывания. Все режимы функционирования контроллера прерываний задаются программно процессором перед началом работы.

Контроллер прямого доступа к памяти принимает запрос на ПДП из системной магистрали, передает его процессору, а после предоставления процессором магистрали производит пересылку данных между памятью и устройством ввода/вывода. Все режимы функционирования контроллера ПДП задаются программно процессором перед началом работы. Использование встроенных в компьютер контроллеров прерываний и ПДП позволяет существенно упростить аппаратуру применяемых плат расширения.

Контроллер регенерации осуществляет периодическое обновление информации в динамической оперативной памяти путем проведения по шине специальных циклов регенерации. На время циклов регенерации он становится хозяином (задатчиком) шины.

Перестановщик байтов данных помогает производить обмен данными между 16-разрядным и 8-разрядным устройствами, пересылать целые слова или отдельные байты.

Часы реального времени и таймер-счетчик - это устройства для внутреннего контроля времени и даты, а также для программной выдержки временных интервалов, программного задания частоты и т.д.

Системные устройства ввода/вывода - это те устройства, которые необходимы для работы компьютера и взаимодействия со стандартными внешними устройствами по параллельному и последовательному интерфейсам. Они могут быть выполнены на материнской плате, а могут располагаться на платах расширения.

Платы расширения устанавливаются в слоты (разъемы) системной магистрали и могут содержать оперативную память и устройства ввода/вывода. Они могут обмениваться данными с другими устройствами на шине в режиме программного обмена, в режиме прерываний и в режиме ПДП. Предусмотрена также возможность захвата шины, то есть полного отключения от шины всех системных устройств на некоторое время.

Важная особенность подобной архитектуры - ее открытость , то есть возможность включения в компьютер дополнительных устройств, причем как системных устройств, так и разнообразных плат расширения. Открытость предполагает также возможность простого встраивания программ пользователя на любом уровне программного обеспечения компьютера.

Первый компьютер семейства, получивший широкое распространение, IBM PC XT, был выполнен на базе оригинальной системной магистрали PC XT-Bus. В дальнейшем (начиная с IBM PC AT) она была доработана до магистрали, ставшей стандартной и получившей название ISA (Industry Standard Architecture). До недавнего времени ISA оставалась основой компьютера.

Однако, начиная с появления процессоров i486 (в 1989 году), она перестала удовлетворять требованиям производительности, и ее стали дублировать более быстрыми шинами: VLB (VESA Local Bus) и PCI (Peripheral Component Interconnect bus) или заменять совместимой с ISA магистралью EISA (Enhanced ISA). Постепенно шина PCI вытеснила конкурентов и стала фактическим стандартом, а начиная с 1999 года в новых компьютерах рекомендуется полностью отказываться от магистрали ISA, оставляя только PCI. Правда, при этом приходится отказываться от применения плат расширения, разработанных за долгие годы для подключения к магистрали ISA.

Другое направление совершенствования архитектуры персонального компьютера связано с максимальным ускорением обмена информацией с системной памятью . Именно из системной памяти компьютер читает все исполняемые команды, и в системной же памяти он хранит данные. То есть больше всего обращений процессор совершает именно к памяти. Ускорение обмена с памятью приводит к существенному ускорению работы всей системы в целом.

Но при использовании для обмена с памятью системной магистрали приходится учитывать скоростные ограничения магистрали. Системная магистраль должна обеспечивать сопряжение с большим числом устройств, поэтому она должна иметь довольно большую протяженность; она требует применения входных и выходных буферов для согласования с линиями магистрали. Циклы обмена по системной магистрали сложны, и ускорять их нельзя. В результате существенного ускорения обмена процессора с памятью по магистрали добиться невозможно.

Разработчиками был предложен следующий подход. Системная память подключается не к системной магистрали, а к специальной высокоскоростной шине, находящейся «ближе» к процессору, не требующей сложных буферов и больших расстояний. В таком случае обмен с памятью идет с максимально возможной для данного процессора скоростью, и системная магистраль не замедляет его. Особенно актуальным это становится с ростом быстродействия процессора (сейчас тактовые частоты процессоров персональных компьютеров достигают 1 - 3 ГГц).

Таким образом, структура персонального компьютера из одношинной, применявшейся только в первых компьютерах, становится трехшинной.

Назначение шин следующее:

    к локальной шине подключаются центральный процессор и кэш-память (быстрая буферная память);

    к шине памяти подключается оперативная и постоянная память компьютера, а также контроллер системной шины;

    к системной шине (магистрали) подключаются все остальные устройства компьютера.

Все три шины имеют адресные линии, линии данных и управляющие сигналы . Но состав и назначение линий этих шин не совпадают между собой, хотя они и выполняют одинаковые функции. С точки зрения процессора, системная шина (магистраль) в системе всего одна, по ней он получает данные и команды и передает данные как в память, так и в устройства ввода/вывода.

Временные задержки между системной памятью и процессором в данном случае минимальны, так как локальная шина и шина памяти соединены только простейшими быстродействующими буферами. Еще меньше задержки между процессором и кэш-памятью, подключаемой непосредственно к локальной шине процессора и служащей для ускорения обмена процессора с системной памятью.

Если в компьютере применяются две системные шины, например, ISA и PCI, то каждая из них имеет свой собственный контроллер шины, и работают они параллельно, не влияя друг на друга. Тогда получается уже четырехшинная, а иногда и пятишинная структура.

Пример многошинной структуры

В наиболее распространенных настольных компьютерах класса Desktop в качестве конструктивной основы используется системная или материнская плата (motherboard), на которой располагаются все основные системные узлы компьютера, а также несколько разъемов (слотов) системной шины для подключения дочерних плат - плат расширения (интерфейсных модулей, контроллеров, адаптеров). Как правило, современные системные платы допускают замену процессора, выбор его тактовой частоты, замену и наращивание оперативной памяти, выбор режимов работы других узлов.

По определению, архитектура - это описание слож­ной системы, состоящей из множества элементов, как еди­ного целого.

Архитектура современного персонального компьютера является обобщением принципов построения ЭВМ, предло­женным группой ученых во главе с Джоном фон Нейманом. В классической архитектуре неймановской ЭВМ мож­но выделить 5 основных блоков, показанных на рис. 2.1. С помощью устройств ввода (УВв) данные и програм­мы, представленные в двоичной форме, попадают в опера­тивно-запоминающее устройство (ОЗУ), или память, ма­шины. Для реализации команд, образующих программу, используется арифметико-логическое устройство (АЛУ), выполняющее арифметические операции, операции срав­нения, алгебры логики и др. Взаимодействие ОЗУ и АЛУ осуществляет устройство управления (УУ). С его помощью программа из ОЗУ передается в АЛУ, оты­скиваются нужные данные, выполняются вычисления, происходит запись в память и организуется выдача результата посред­ством устройства вывода (УВыв).

Реальная структура современного компьютера значительно сложнее, что обусловлено стремлением к повышению его производительности и функциональных возможностей

Так, в структуре персональной ЭВМ появилась кэш­память, введены каналы прямого доступа к оперативной памяти, используемые для обмена данными с устройства­ми ввода/вывода, минуя микропроцессор.

Периферийные устройства подключаются к аппарату­ре компьютера через специальные контроллеры (К) или адаптеры (А) - устройства управления, освобождая про­цессор от непосредственного управления данным оборудо­ванием.

В архитектуре персонального компьютера появился сопроцессор - устройство, функционирующее параллель­но с главным процессором и выполняющее специфические операции: например, математический сопроцессор пред­назначен для сложных математических вычислений.

Системный блок является центральной частью ПК. В корпусе системного блока размещены внутренние уст­ройства ПК. В состав системного блока входят следующие Устройства:

Системная (материнская) плата с микропроцессором;

Оперативная память;

Накопитель на жестком магнитном диске;

Контроллеры или адаптеры для подключения и управления внешними устройствами ПК (монитором, звуко­выми колонками и др.);

Порты для подключения внешних устройств (принтер,

мышьи др.);

Внешние запоминающие устройства (ВЗУ) для гибких магнитных дисков и лазерных дисков типа CD-ROM и DVD-ROM.

Системная плата является интегрирующим (объеди­няющим) узлом ПК. Системная плата во многом опреде­ляет конфигурацию ПК, поскольку от ее параметров за­висит тип используемого микропроцессора, максималь­ный объем оперативной памяти, количество и способы подключения внешних устройств ПК и другие характе­ристики.

Микропроцессор (или процессор) - это главная мик­росхема компьютера. Он запускает программный код, на­ходящийся в памяти, и управляет всеми устройствами ком­пьютера либо напрямую, либо через соответствующие кон­троллеры.

Основой любого микропроцессора является ядро, ко­торое состоит из миллионов транзисторов, расположен­ных на кристалле кремния. Микропроцессор имеет спе­циальные ячейки, которые называются регистрами об­щего назначения (РОН). Работа процессора состоит в выборе из памяти в определенной последовательности команд и данных и их выполнении. Для повышения бы­стродействия ПК микропроцессор снабжен внутренней кэш-памятью.

Процессоры Intel, используемые в IBM-совместимых ПК, насчитывают более тысячи команд и относятся к про­цессорам с расширенной системой команд - CISC-процес­сорам (CISC - Complex Instruction Set Computing).

Обмен данными и командами между внутренними уст­ройствами ПК происходит по проводникам многожильно­го кабеля - системной шине. Основной задачей систем­ной шины является передача данных между процессором и остальными электронными узлами компьютера. Разли­чают три вида шин:

Шина данных;

Шина адреса;

Шина команд.

Шина данных. По этой шине происходит передача данных из оперативной памяти в РОН процессора и на­оборот. В ПК на базе процессоров Intel Pentium шина дан­ных 64-разрядная, т. е. за один такт на обработку посту­пает сразу 8 байт данных.

Шина адреса. По этой шине передаются адреса ячеек оперативной памяти, где находятся команды, которые не­обходимо выполнить процессору. Кроме этого, по этой шине передаются данные, с которыми оперируют коман­ды. В современных процессорах адресная шина 32-разряд­ная, то есть она состоит из 32 параллельных проводников.

Шина команд. По этой шине из оперативной памяти поступают команды, выполняемые процессором. Коман­ды представлены в виде байтов. Простые команды занима­ют один байт, а более сложные - два, три и больше бай­тов. Большинство современных процессоров имеют 32-раз­рядную командную шину, хотя существуют 64-разрядные процессоры с 64-разрядной командной шиной.

Рассмотрим основные шинные интерфейсы системных плат, но более подробно остановимся на шине USB.

USB (Universal Serial Bus). Универсальная последова­тельная шина USB является обязательным элементом со­временного ПК, она пришла на смену устаревшим парал­лельным и последовательным портам. Шина USB пред­ставляет собой последовательный интерфейс передачи Данных для средне- и низкоскоростных периферийных Устройств. Она позволяет подключить до 256 разных уст­ройств с последовательным интерфейсом. Шина USB под­держивает автоопределение (Plug and play) новых уст­ройств, а также так называемое «горячее» подключение, то есть подключение к работающему компьютеру без его перезагрузки. Скорость передачи данных по USB состав­ляет 1,5 Мбит/с. Приведем без пояснения другие типы ^ин: ISA (Industry Standard Architecture), PCI (Periph­eral Component Interconnect), FSB (Front Side Bus), AGP (Advanced Graphic Port).

Все виды запоминающих устройств, расположенные на системной плате, образуют внутреннюю память ПК, к которой относятся:

Оперативная память;

Сверхоперативная память (кэш-память);

Постоянная память.

Оперативная память RAM (Random Access Memory) ис­пользуется для хранения исполняемых в данный момент про­грамм и необходимых для этого данных. Через оперативную память происходит обмен командами и данными между мик­ропроцессором, внешней памятью и периферийными устрой­ствами. Высокое быстродействие определяет название (опе­ративная) данного вида памяти. Ключевой особенностью опе­ративной памяти является ее энергозависимость, т.е. данные хранятся в ней только при включенном компьютере.

По физическому принципу действия различают дина­мическую память DRAM и статическую память SRAM.

Динамическая память при всей простоте и низкой стоимости обладает существенным недостатком, заклю­чающимся в необходимости периодической регенерации (обновлении) содержимого памяти.

Микросхемы динамической памяти используются как основное оперативное запоминающее устройство (ОЗУ), а микросхемы статической - для кэш-памяти.

Кэш-память (Cache memory) используется для повы­шения быстродействия ПК. Принцип «кэширования» за­ключается в использовании быстродействующей памяти для хранения наиболее часто используемых данных или команд, при этом сокращается количество обращений к более медленной оперативной памяти.

Постоянная память ROM (Read Only Memory) пред­назначена для хранения неизменяемой информации и раз­мещается в микросхеме постоянного запоминающего уст­ройства (ПЗУ). Микросхема ПЗУ способна продолжитель­ное время сохранять информацию даже при отключенном компьютере, поэтому постоянную память также называ­ют энергонезависимой памятью.

Комплект программ, находящийся в ПЗУ, составляет базовую систему ввода/вывода BIOS (Basic Input/Output с tem). bios содержит программы управления клавиатурой, видеокартой, дисками, портами и другими устройствами. Основное назначение этих программ состоит в том, чтобы проверить состав и работоспособность системы и обеспечить взаимодействие основных узлов ПК до загруз­ки какой-либо операционной системы. Кроме этого, в BIOS входит программа тестирования, которая выполняется при включении компьютера.

Несмотря на то что современные модели компьютеров представлены на рынке широким спектром брендов, собраны они в рамках небольшого количества архитектур. С чем это связано? Какова специфика архитектуры современных ПК? Какие программные и аппаратные компоненты ее формируют?

Определение архитектуры

Что такое архитектура ПК? Под этим довольно широким термином принято понимать совокупность логических принципов сборки компьютерной системы, а также отличительные особенности технологических решений, внедряемых в нее. Архитектура ПК может быть инструментом стандартизации. То есть компьютеры в рамках нее могут собираться согласно установленным схемам и технологическим подходам. Объединение тех или иных концепций в единую архитектуру облегчает продвижение модели ПК на рынке, позволяет создавать программы, разработанные разными брендами, но гарантированно подходящие для нее. Единая архитектура ПК также позволяет производителям компьютерной техники активно взаимодействовать на предмет совершенствования тех или иных технологических компонентов ПК.

Под рассматриваемым термином может пониматься совокупность подходов к сборке компьютеров или отдельных его компонентов, принятых на уровне конкретного бренда. В этом смысле архитектура, которая разработана производителем, является его интеллектуальной собственностью и используется только им, может выступать конкурентным инструментом на рынке. Но даже в таком случае решения от разных брендов иногда могут быть классифицированы в рамках общей концепции, объединяющей в себе ключевые критерии, которые характеризуют компьютеры различных моделей.

Термин «архитектура ПК» информатика как отрасль знаний может понимать по-разному. Первый вариант трактовки предполагает интерпретацию рассматриваемого понятия как стандартизирующего критерия. В соответствии с другой интерпретацией архитектура — это, скорее, категория, позволяющая одному бренду-производителю стать конкурентным в отношении других.

Интереснейший аспект — то, как соотносятся история и архитектура ПК. В частности, это появление классической логической схемы конструирования компьютеров. Рассмотрим ее особенности.

Классическая архитектура компьютера

Ключевые принципы, в соответствии с которыми предполагалось конструирование ПК по определенной логической схеме, предложил Джон фон Нейман, выдающийся математик. Его идеи были реализованы производителями ПК, относящихся к первым двум поколениям. Концепция, разработанная Джоном фон Нейманом, — это классическая архитектура ПК. Каковы ее особенности? Предполагается, что компьютер должен состоять из следующих основных компонентов:

Арифметического и логического блока;

Устройства для управления;

Блока внешней памяти;

Блока оперативной памяти;

Устройств, предназначенных для ввода и вывода информации.

В рамках данной схемы взаимодействие технологических компонентов должно реализовываться по конкретной последовательности. Так, сначала в память ПК попадают данные из компьютерной программы, которые могут вводиться с помощью внешнего устройства. Затем устройство для управления считывает информацию из памяти компьютера, после чего направляет ее на выполнение. В этом процессе при необходимости задействуются остальные компоненты ПК.

Архитектура современных компьютеров

Рассмотрим, каковы основные особенности архитектуры современных ПК. Она несколько отличается от концепции, которую мы изучили выше, но во многом продолжает ее. Ключевая особенность ПК новейших поколений — арифметический, логический блок, а также то, что устройства для управления объединены в единый технологический компонент — процессор. Во многом это стало возможным благодаря появлению микросхем и дальнейшему их совершенствованию, что позволило уместить в сравнительно небольшой детали компьютера широкий спектр функций.

Архитектура современного ПК также характеризуется тем, что в ней присутствуют контроллеры. Они появились как результат пересмотра концепции, в рамках которой процессор должен был выполнять функцию обмена данными с внешними устройствами. Благодаря возможностям появившихся интегральных схем соответствующий функциональный компонент производители ПК решили отделить от процессора. Так появились различные каналы обмена, а также периферийные микросхемы, которые затем начали называться контроллерами. Соответствующие аппаратные компоненты на современных ПК могут, например, управлять работой дисков.

Устройство и архитектура ПК современных образцов предполагают использование шины. Основное ее назначение — обеспечение коммуникаций между различными аппаратными элементами компьютера. Ее структура может предполагать наличие специализированных модулей, отвечающих за ту или иную функцию.

Архитектура IBM

Компанией IBM была разработана архитектура ПК, ставшая фактически одним из мировых стандартов. Ее отличительная особенность — в открытости. То есть компьютер в рамках нее перестает быть готовым продуктом от бренда. Компания IBM — не монополист рынка, хотя один из его первопроходцев в аспекте разработки соответствующей архитектуры.

Пользователь или компания, собирающие ПК на платформе IBM, могут самостоятельно определять то, какие компоненты будут включены в структуру компьютера. Также возможна замена того или иного электронного компонента на более совершенный. Стремительное развитие компьютерных технологий позволило реализовать принцип открытой архитектуры ПК.

Особенности ПО для компьютеров архитектуры IBM

Важный критерий отнесения ПК к платформе IBM — его совместимость с разными операционными системами. И в этом также прослеживается открытость рассматриваемого типа архитектуры. Компьютеры, относящиеся к IBM-платформе, могут управляться ОС Windows, Linux в большом количестве модификаций, а также иными операционными системами, которые совместимы с аппаратными компонентами ПК рассматриваемой архитектуры. Не считая ПО от крупных брендов, на IBM-платформу можно устанавливать различные авторские программные продукты, выпуск и инсталляция которых обычно не требуют согласования с фирмами-производителями аппаратных элементов.

В числе программных компонентов, которые есть практически в любом компьютере на платформе IBM, базовая система ввода и вывода, называемая также BIOS. Она призвана обеспечивать выполнение основных аппаратных функций ПК вне зависимости от того, какого типа операционная система на нем установлена. И это еще один, по сути, признак открытости архитектуры, о которой идет речь: производители BIOS толерантны к производителям ОС и любого другого ПО. Собственно, тот факт, что BIOS может выпускаться разными брендами — это также критерий открытости. Функционально системы BIOS от разных разработчиков близки.

Если на компьютере не установлена BIOS, то его работа практически невозможна. Не имеет значения, инсталлирована ли на ПК операционная система — необходимо обеспечение взаимодействия между аппаратными компонентами компьютера, и его возможно реализовать только с помощью BIOS. Переустановка BIOS на компьютере требует специальных программно-аппаратных инструментов, в отличие от инсталляции ОС или иного вида ПО, работающего в ней. Данная особенность BIOS предопределяется тем, что ее необходимо защищать от компьютерных вирусов.

С помощью BIOS пользователь может управлять аппаратными компонентами ПК, выставляя те или иные настройки. И это также один из аспектов открытости платформы. В некоторых случаях работа с соответствующими настройкам позволяет обеспечить заметное ускорение работы ПК, более стабильное функционирование отдельных его аппаратных компонентов.

Система BIOS во многих ПК дополнена оболочкой UEFI, как считают многие IT-специалисты, это достаточно полезное и функциональное программное решение. Но базовое назначение UEFI принципиально не отличается от того, что характерно для BIOS. Собственно, это такая же система, но интерфейс в ней несколько ближе к тому, что характерен для операционной системы ПК.

Важнейший вид ПО для компьютеров — драйвер. Он необходим для того, чтобы аппаратный компонент, инсталлируемый в компьютер, корректно функционировал. Драйверы обычно выпускаются производителями компьютерных устройств. При этом соответствующий вид ПО, совместимый с одной операционной системой, например Windows, обычно не подходит для других ОС. Поэтому пользователю часто приходится подбирать драйверы, совместимые с конкретными типами программного обеспечения компьютера. В этом смысле IBM-платформа недостаточно стандартизована. Может получиться так, что устройство, прекрасно работающее под ОС Windows, будет невозможно запустить под Linux из-за того, что пользователь не сможет найти нужный драйвер, или же по причине того, что производитель аппаратного компонента попросту не успел выпустить нужный вид программного обеспечения.

Важно, чтобы решение, которое предполагается включить в структуру компьютера, было совместимо не только с конкретной архитектурой, но также и иными технологическими элементами ПК. Какие компоненты можно менять в современных ПК? В числе ключевых: материнская плата, процессор, оперативная память, видеокарта, жесткие диски. Рассмотрим специфику каждого из компонентов подробнее, определим, от чего зависит их совместимость с иными аппаратными элементами, а также выясним, каким образом наиболее корректно можно реализовать принцип открытой архитектуры ПК на практике.

Материнская плата

Один из ключевых компонентов современного компьютера — материнская, или системная, плата. На ней располагаются контроллеры, шины, мосты и иные элементы, позволяющие объединять между собой различные аппаратные компоненты. Благодаря ей фактически реализуется современная архитектура ПК. Системная плата позволяет эффективно распределить функции компьютера по различным устройствам. Данный компонент размещает на себе большинство остальных, а именно процессор, видеокарту, оперативную память, жесткие диски и т. д. BIOS, важнейший программный компонент ПК, в большинстве случаев прописывается в одной из микросхем материнской платы. Важно, чтобы соответствующие элементы не были повреждены.

Заменяя материнскую плату или выбирая нужную модель в процессе сборки ПК, необходимо удостовериться, что новая ее модель будет совместима с иными аппаратными компонентами. Так, есть платы, поддерживающие процессоры Intel, а есть те, на которые можно устанавливать только микросхемы от AMD. Очень важно убедиться в том, что новая плата поддерживает существующие модули памяти. Что касается видеокарты и жестких дисков, обычно никаких проблем не возникает в силу достаточного высокого уровня стандартизации на соответствующих рынках. Но нежелательно, чтобы новая материнская плата и указанные компоненты слишком сильно различались по уровню технологичности. Иначе менее производительный элемент будет тормозить всю систему.

Процессор

Главная микросхема современного компьютера — процессор. Открытая архитектура ПК позволяет по усмотрению пользователя устанавливать на компьютер более мощный, производительный, технологичный процессор. Однако подобная возможность может предполагать ряд ограничений. Так, заменить процессор Intel на AMD без замены другого компонента — материнской платы - в общем случае невозможно. Также проблематична установка одной микросхемы вместо другой того же бренда, но которая принадлежит к иного типа технологической линейке.

Устанавливая более мощный процессор на ПК, необходимо убедиться, что оперативная память, жесткие диски и видеокарта не сильно отстают от него технологически. Иначе, как мы уже отметили выше, замена микросхемы может не принести ожидаемого результата — компьютер не будет работать быстрее. Основные показатели производительности процессора — тактовая частота, количество ядер, величина кэш-памяти. Чем они больше, тем быстрее работает микросхема.

Оперативная память

Данный компонент также непосредственным образом влияет на производительность ПК. Основные функции ОЗУ в целом те же, что были характерны для компьютеров первых поколений. В этом смысле оперативная память - классический аппаратный компонент. Однако тем самым подчеркивается ее важность: до сих пор производители ПК не придумали ей достойной альтернативы.

Основной критерий производительности памяти — это ее объем. Чем он больше, тем быстрее работает компьютер. Также модули ПК обладают тактовой частотой, как и процессор. Чем она выше, тем более производителен компьютер. Замену ОЗУ следует осуществлять, убедившись, что новые модули совместимы с материнской платой.

Видеокарта

Принципы архитектуры ПК первых серий не предполагали выделения видеокарты в отдельный компонент. То есть данное аппаратное решение — это также один из критериев отнесения компьютера к современным поколениям. Видеокарта отвечает за обработку компьютерной графики — одного из наиболее сложных типов данных, требующих высокой производительности микросхем.

Заменять данный аппаратный компонент следует, соотнося основные его характеристики с мощностью и уровнем технологичности процессора, памяти и материнской платы. Закономерность здесь та же, что мы отметили выше: нежелательно, чтобы соответствующие элементы ПК сильно различались по уровню производительности. Для видеокарты ключевые критерии — это объем встроенной памяти, а также тактовая частота основной ее микросхемы.

Бывает, что модуль, отвечающий за обработку компьютерной графики, встроен в процессор. И это нельзя считать признаком того, что компьютер устаревший, наоборот, подобная схема наблюдается на многих современных ПК. Наибольшую популярность данная концепция приобретает в среде производителей ноутбуков. Это вполне логично: брендам необходимо обеспечивать компактность такого типа компьютеров. Видеокарта — это довольно объемный аппаратный компонент, ее размер чаще всего заметно больше процессора или модуля памяти.

Жесткие диски

Жесткий диск — это также классический компонент компьютера. Относится к категории постоянных запоминающих устройств. Типичен для архитектуры современных ПК. На жестких дисках часто хранится основной объем файлов. Можно отметить, что данный компонент в числе наименее требовательных к специфике материнской платы, процессора, ОЗУ и видеокарты. Но опять же, если жесткий диск характеризуется низкой производительностью, то есть вероятность, что работа компьютера будет медленной, даже если на нем будут установлены иные аппаратные компоненты, относящиеся к самым технологичным.

Основной критерий производительности дисков — скорость оборотов. Важен также и объем, но значимость этого параметра зависит от потребностей пользователя. Если на компьютере установлен небольшой по вместительности жесткий диск с очень высокими оборотами, то ПК будет работать быстрее, чем при высокой емкости и низкой скорости вращения соответствующих элементов устройства.

Материнская плата, процессор, ОЗУ, а также видеокарта — внутренние компоненты ПК. Жесткий диск может быть как внутренним, так и внешним, и в этом случае чаще всего съемным. Основные аналоги жесткого диска - флешки, карты памяти. В ряде случаев они могут полностью его заменить, но по возможности рекомендуется все же оснащать ПК хотя бы одним жестким диском.

Понятие архитектуры ПК открытого типа, конечно же, не ограничивается возможностью замены и выбора указанных пяти компонентов. Есть очень много устройств иного назначения, которые входят в состав компьютера. Это приводы DVD и Blue-ray, звуковые карты, принтеры, сканеры, модемы, сетевые карты, вентиляторы. Набор соответствующих компонентов может предопределять конкретная брендированная архитектура ПК. Системная плата, процессор, ОЗУ, видеокарта и жесткий диск — элементы, без которых современный ПК работать не сможет или его функционирование будет крайне затруднено. Они же главным образом определяют скорость работы. И потому, обеспечив установку на компьютере технологичных и современных компонентов соответствующего типа, пользователь сможет собрать высокопроизводительный и мощный ПК.

Компьютеры Apple

Какие еще есть типы архитектур ПК? В числе тех, которые составляют прямую конкуренцию архитектуре IBM, совсем немного. Например, это компьютеры Macintosh от Apple. Конечно, по многим критериям они схожи с архитектурой IBM — в них также есть процессор, память, видеокарта, материнская плата и жесткие диски.

Однако компьютеры от Apple характеризуются тем, что их платформа закрыта. Пользователь весьма ограничен в установке на ПК компонентов по своему усмотрению. Apple — это единственный бренд, который может легально выпускать компьютеры в соответствующей архитектуре. Аналогично Apple — единственный поставщик функциональных операционных систем, выпускаемых в рамках собственной платформы. Таким образом, те или иные виды архитектуры ПК могут различаться не столько аппаратными составляющими компьютера, сколько подходами брендов-производителей к выпуску соответствующих решений. В зависимости от собственной стратегии развития компания может делать акцент на открытости или же закрытости платформы.

Итак, основные особенности архитектуры современных ПК на примере IBM-платформы: отсутствие монопольного бренда-производителя компьютеров, открытость. Причем как в программном, так и в аппаратном аспекте. Что касается главного конкурента IBM-платформы, компании Apple, основные признаки ПК соответствующей архитектуры — это закрытость, а также выпуск компьютеров единственным брендом.

Загрузка...