ecosmak.ru

Скелетные мышцы виды мышечных волокон. Физиология скелетных мышц

Каждое мышечное волокно представляет собой гигантскую многоядерную клетку – симпласт, образованную в процессе эмбрионального развития организма путем слияния множества отдельных клеток – миобластов.

Строение мышечного волокна существенно отличается от строения других клеток. Важнейшие отличительные особенности - это размеры, форма, многоядерность, наличие сократительного аппарата. Строение мышечного волокна представлено на рис. 60.

Рис. 60. Важнейшие структурные элементы мышечного волокна

Остановимся на важнейших структурных элементах мышечного волокна.

Сарколемма. Снаружи мышечное волокно окружено оболочкой – сарколеммой , обладающей высокой прочностью и эластичностью. Эти свойства сарколеммы обеспечиваются присутствием в ней большого количества эластичных волокон белков коллагена и эластина, образующих густую сеть.

Сарколемма обладает избирательной проницаемостью, пропуская внутрь клетки преимущественно те вещества, для превращения которых там имеются условия – ферментные системы. В сарколемме присутствуют специальные транспортные системы, с помощью которых поддерживается, в частности, разница в концентрации ионов Na + , К + , Сl ‾ внутри и снаружи мышечного волокна, что обеспечивает формирование на его поверхности мембранного потенциала.

К каждому мышечному волокну подходит окончание двигательного нерва. Место прикрепления нервного окончания к мышечному волокну называется нервно-мышечным синапсом. .

Внутри мышечного волокна находятся многочисленные клеточные органеллы, важнейшими из которых являются ядра, митохондрии, рибосомы и др. Функции указанных органелл описаны в главе 2 (2.5.1). Пространство между органеллами заполнено внутриклеточной жидкостью – саркоплазмой. Среди структурных элементов мышечного волокна наибольший объем занимают сократительные нити– миофибриллы.

Миофибриллы. Миофибриллы представляют собой длинные тонкие нити, расположенные вдоль мышечного волокна. Количество миофибрилл в мышечных волокнах может колебаться в диапазоне от нескольких десятков до полутора и более тысяч. Под влиянием систематической мышечной тренировки, особенно скоростно-силовой направленности, количество миофибрилл может увеличиваться. Напротив, ограничение двигательной активности сопровождается уменьшением количества миофибрилл. Строение мышечных миофибрилл представлено на рис. 61
Рис. 61. Строение миофибрилл



При рассмотрении в оптический микроскоп видно, что миофибриллы имеют повторяющуюся поперечную исчерченность – темные и светлые полосы (диски). Темные диски (А-диски) в центральной части имеют более светлую полосу (Н-зону). Светлые диски (I-диски) в центре пересекаются узкой темной полосой (линией Z). Участок миофибрилл между двумя линиями Z получил название саркомера. Количество саркомеров в миофибрилле зависит от длины мышечного волокна и может достигать нескольких сотен. Длина саркомеров у разных людей может различаться.

Исследование срезов мышечных волокон в электронном микроскопе показали, что каждая миофибрилла состоит из большого числа параллельно расположенных толстых и тонких нитей (филаментов), которые характеризуются строгим взаимным распределением. Толстые нити находятся в зоне А-дисков. Они построены из белка миозина. Миозин является важнейшим сократительным белком, на его долю приходится около 55% от общего количества сократительных белков. Молекула миозина имеет длинную фибриллярную (удлиненную) часть и глобулярную (округлой формы) головку. Фибриллярная часть имеет двухспиральную полипептидную конфигурацию. Функция фибриллярной части молекулы миозина связана с формированием структуры толстой миозиновой нити.

Глобулярные головки миозиновых нитей имеют два активных центра, один из которых обладает АТФ-азной активностью (способностью расщеплять молекулы АТФ), другой – способностью связываться с активными центрами на актиновых нитях (актинсвязывающий центр). Головки молекул миозина располагаются на поверхности миозиновых нитей, образуя выпячивания (отростки). При этом они строго ориентированы в пространстве – располагаются шестью продольными рядами. Толстая миозиновая нить состоит как бы из двух частей, зеркально повторяющих друг друга. Если ее разрезать по- середине, то образуются два совершенно одинаковых фрагмента.

Молекулы миозина обладают способностью связывать ионы Са 2+ и Мg 2+ . Ионы кальция являются кофактором фермента АТФ-азы (в его отсутствии фермент не активен). Ионы магния обеспечивают миозину способность связывать молекулы АТФ и АДФ.

В зоне светлых дисков (I-дисков) расположены тонкие нити, построенные из белков актина, тропомиозина и тропонина. Актин – второй в количественном отношении сократительный белок, составляющий основу актиновых нитей. Тропомиозин – структурный белок актиновых нитей, имеющий фибриллярную форму. Сдвоенные молекулы тропомиозина обвивают актиновые нити. Тропонин является регуляторным белком актиновых нитей. Он существует в трех формах, одна из которых блокирует взаимодействие актина с миозином. Другая форма способна связывать ионы кальция, благодаря чему изменяется конформация молекул первой формы тропонина и открывается центр взаимодействия актина с миозином. Третья форма тропонина обеспечивает крепление первых двух форм на актиновой нити. Кроме того, в составе тонких актиновых нитей имеется белок актинин. Он содержится в зоне линии Z, выполняющей роль своеобразной перегородки, и обеспечивает прикрепление к ней концов актиновых нитей.

К числу важнейших структурных элементов мышечного волокна относится саркоплазматический ретикулум. Саркоплазматический ретикулум - это внутриклеточная система взаимосвязанных пузырьков и канальцев (цистерн), пронизывающих клетку и особенно плотно концентрирующихся в зоне соприкосновения актиновых и миозиновых нитей.

Саркоплазматический (в клетках других органов и тканей – эндоплазматический) ретикулум имеется в каждой клетке организма человека. Но в мышечном волокне он выполняет несколько необычные по сравнению с другими клетками функции. Основная его роль в мышечном волокне заключается в регуляции содержания ионов кальция возле актиновых и миозиновых нитей. В состоянии расслабления ретикулум связывает ионы Са 2+ , их концентрация в саркоплазме составляет примерно 10 -7 моль·литр -1 . Под воздействием двигательного импульса ионы кальция освобождаются из ретикулума и их концентрация повышается до 10 -5 моль·литр -1 .

Способность саркоплазматического ретикулума связывать и высвобождать в цитоплазму ионы Са 2+ связана с локализацией на его внутренней поверхности особых кальций связывающих белков. На поверхности ретикулума располагаются также рибосомы – особые внутриклеточные образования, в которых осуществляется синтез белков.

Мышечное волокно имеет также систему трубчатых выпячиваний сарколеммы (Т-систему ), направленных внутрь мышечного волокна и располагающихся между миофибриллами и саркоплазматическим ретикулумом. Т-система обеспечивает быстрое распространение волны возбуждения от сарколеммы вглубь волокна.

В мышечном волокне содержатся и другие внутриклеточные органеллы: митохондрии, лизосомы. Функции этих структур мышечного волокна уже были описаны в главе «Общие закономерности обмена веществ».

Мышечное волокно содержит не одно, а несколько ядер, которые располагаются не в центральной части волокна, а по периметру, непосредственно под сарколеммой

Типы мышечных волокон

В скелетных мышцах выделяют несколько типов мышечных волокон, различающихся по своим двигательным характеристикам, соотношению различных химических и структурных компонентов, особенностям структурной организации. К основным типам мышечных волокон относятся медленносокращающиеся (МС) и быстросокращающиеся (БС). Медленносокращающиеся волокна в связи с более высоким содержанием в них миоглобина называют еще красными (или тип I). Быстросокращающиеся, для которых характерно более низкое содержание миоглобина, называют белыми (или тип II) . Следует сразу оговориться, что различить эти два типа волокон по цвету практически невозможно. Цвет у одних и у других красный.

Бытрые и медленные волокна более чем в два раза различаются по максимальной скорости сокращения. Так, время одиночного сокращения МС достигает 110 мс, а БС – 50 мс. Кроме того, БС более чем в два раза превышают МС по своим силовым характеристикам.

Существенно различаются разные типы волокон по уровню развития различных механизмов преобразования энергии. МС волокна имеют хорошо развитый механизм аэробного ресинтеза АТФ, что обеспечивается большим количеством митохондрий и высоким содержанием ферментов аэробного биологического окисления, а также большими запасами субстратов аэробного окисления: гликогена, жиров. В МС волокнах содержится больше белка миоглобина, благодаря которому они имеют больший запас кислорода и более благоприятные условия для перехода кислорода из крови внутрь волокна.

В БС волокнах значительно больше миофибрилл, выше АТФ-азная активность, больше концентрация ионов кальция.

Внутри БС волокон различают два подтипа: БС а и БС б. Эти два подтипа отличаются, главным образом, разным уровнем развития важнейших механизмов преобразования энергии. У волокон БС а более хорошо развит анаэробный гликолиз и несколько слабее, чем у МС волокон - аэробный путь ресинтеза АТФ. Они являются ведущими при выполнении упражнений т.н. субмаксимальной мощности, продолжительность которых колеблется в диапазоне от 30 сек до 2-3 мин, при условии выполнения работы с максимальной для данной продолжительности интенсивностью.

У волокон БС б, наряду с анаэробным гликолизом хорошо развит креатинфосфатный механизм ресинтеза АТФ. Они подключаются при выполнении упражнений максимальной и околомаксимальной интенсивности: бег на 100 м, упражнения с большими отягощениями и т.п.

Сказанное не означает, что упражнения указанной интенсивности, выполняются исключительно одним типом мышечных волокон. Речь идет о степени их вовлечения в работу, что, безусловно, определяется центральной нервной системой. Выполнение упражнений, мощность которых не превышает 20-25% от максимально возможной для данного индивидуума обеспечивается только «красными» мышечными волокнами. При работе, интенсивность которой находится в диапазоне 25-40% от максимальной, к ее выполнению подключаются волокна БС а. Если интенсивность упражнения превышает 40% от максимальной, в работу вовлекаются волокна БС б.

При повышении интенсивности упражнения в пределах каждой зоны мощности увеличивается участие в ее обеспечении волокон всех типов, но в наибольшей степени тех, которые подключаются к работе в данном диапазоне мощности.

Различные типы мышечных волокон различаются и условиями иннервации. Мотонейроны, иннервирующие БС мышечные волокна, более толстые, они имеют более разветвленную сеть нервных окончаний (ветвей аксонов), благодаря чему иннервируют значительно большее количество мышечных волокон (от300 до 500). У БС волокон больше зона прилегания нервного окончания к мышечному волокну, что создает более благоприятные условия для иннервации и возникновения потенциала действия.

Волокна скелетных мышц не одинаковы по своим механическим и метаболическим особенностям. Типы волокон различаются на основе следующих характеристик:

В зависимости от максимальной скорости укорочения - быстрые волокна и медленные волокна ;

В зависимости от главного пути образования АТФ - оксидативные волокна и гликолитические волокна .

Быстрые и медленные мышечные волокна содержат изоферменты миозина , которые расщепляют АТФ с разной максимальной скоростью; этому соответствует различная максимальная скорость рабочего цикла поперечных мостиков и, следовательно, укорочения волокна. Высокая АТФазная активность миозина свойственна быстрым волокнам, более низкая - медленным волокнам. Хотя в быстрых волокнах скорость рабочего цикла примерно в четыре раза выше, чем в медленных, поперечные мостики обоих типов генерируют одинаковую силу.

Другой подход к классификации волокон скелетных мышц основан на различиях ферментативных механизмов синтеза АТФ. В некоторых волокнах много митохондрий , и, следовательно, обеспечивается высокий уровень окислительного фосфорилирования ; это оксидативные волокна . Количество образующейся в них АТФ зависит от снабжения мышцы кровью, с которой поступают молекулы кислорода и богатых энергией соединений. Волокна этого типа окружены многочисленными капиллярами. Кроме того, в них присутствует связывающий кислород белок - миоглобин , увеличивающий скорость диффузии кислорода, а также выполняющий роль кратковременного кислородного депо в мышечной ткани. Благодаря значительному содержанию миоглобина оксидативные волокна окрашены в темно-красный цвет; их часто называют красными мышечными волокнами.

Кроме того, рассмотренные три типа мышечных волокон характеризуются разной устойчивостью к утомлению . Быстрые гликолитические волокна утомляются через короткое время, тогда как медленные оксидативные волокна очень выносливы, что позволяет им длительно поддерживать сократительную активность практически при постоянном уровне напряжения. Быстрые оксидативные волокна занимают промежуточное место по способности противостоять развитию утомления ( рис. 30.29).

Характеристики трех типов волокон скелетных мышц обобщены в табл. 30.3 .

Различают три типа скелетных мышечных волокон в зависимости от максимальной скорости укорочения и преобладающего способа образования АТФ: медленные оксидативные, быстрые оксидативные и быстрые гликолитические.

Разная максимальная скорость укорочения быстрых и медленных волокон обусловлена различиями АТФазы миозина: высокой и низкой АТФазной активности соответствуют быстрые и медленные волокна.

Быстрые гликолитические волокна имеют в среднем больший диаметр, чем оксидативные, и потому развивают более значительное напряжение, но быстрее утомляются.

Все мышечные волокна одной двигательной единицы принадлежат к одному и тому же типу; большинство мышц содержат все три типа двигательных единиц.

Характеристики трех типов скелетных мышечных волокон обобщены в

Профессор Суворова Г.Н.

Мышечные ткани.

Представляют собой группу тканей, которые осуществляют двигательные функции организма:

1) сократительные процессы в полых внутренних органах и сосудах

2) перемещение частей тела относительно друг друга

3) поддержание позы

4) перемещение организма в пространстве.

Мышечные ткани имеют следующие морфофункциональные характеристики:

1) Их структурные элементы имеют удлиненную форму.

2) Сократимые структуры (миофиламенты и миофибриллы) располагаются продольно.

3) Для мышечного сокращения необходимо большое количество энергии, поэтому в них:

Содержится большое число митохондрий

Имеются трофические включения

Может присутствовать железосодержащий белок миоглобин

Хорошо развиты структуры, в которых депонируются ионы Са ++

Мышечная ткань подразделяется на две основные группы

1) гладкую (неисчерченную)

2) Поперечнополосатую (исчерченную)

Гладкая мышечная ткань: имеет мезенхимное происхождение.

Кроме того, выделяют группу миоидных клеток, к ним относятся

Миоидные клетки, имеющие нейральное происхождение (образует мышцы радужки)

Миоидные клетки, имеющие эпидермальное происхождение (миоэпителиальные клетки потовых, слюнных, слезных и молочных желез)

Поперечнополосатая мышечная ткань подразделяется на скелетную и сердечную. Обе эти разновидности развиваются из мезодермы, но из разных ее частей:

Скелетная – из миотомов сомитов

Сердечная – из висцерального листка спланхнотома.

Скелетная мышечная ткань

Составляет около 35-40% массы тела человека. В качестве основного компонента входит в состав скелетных мышц, кроме того, образует мышечную основу языка, входит в состав мышечной оболочки пищевода и т.д.

Развитие скелетных мышц . Источник развития – клетки миотомов сомитьов мезодермы, детерминированные в направлении миогенеза. Стадии:

Миобласты

Мышечные трубочки

Дефинитивная форма миогенеза – мышечное волокно.

Строение скелетной мышечной ткани.

Структурно-функциональной единицей скелетной мышечной ткани является мышечное волокно. Оно представляет собой вытянутое цилиндрическое образование с заостренными концами, диаметром от 10 до 100 мкм, вариабельной длины (до 10-30 см.).

Мышечное волокно является комплексным (клеточно-симпластическим) образованием, которое состоит их двух основных компонентов

1. миосимпласта

2. миосателлитоцитов.

Снаружи мышечное волокно покрыто базальной мембраной, которая вместе с плазмолеммой миосимпласта образует так называемую сарколемму.

Миосимпласт является основным компонентом мышечного волокна как по объему, так и по выполняемой функции. Миосимпласт является гигантской надклеточной структурой, которая образуется путем слияния огромного числа миобластов в эмбриогенезе. На периферии миосимпласта располагается от нескольких сотен до нескольких тысяч ядер. Вблизи ядер локализуются фрагменты пластинчатого комплекса, ЭПС, единичные митохондрии.


Центральная часть миосимпласта заполнена саркоплазмой. Саркоплазма содержит все органеллы общего значения, а также специализированные аппараты. К ним относятся:

Сократительный

Аппарат передачи возбуждения с сарколеммы

на сократительный аппарат.

Энергетический

Опорный

Сократительный аппарат мышечного волокна представлен миофибриллами.

Миофибриллы имеют вид нитей (длина мышечного волокна) диаметром 1-2 мкм. Они обладают поперечной исчерченностью, обусловленной чередованием различно преломляющих поляризованный свет участков (дисков) – изотропных (светлых) и анизотропных (темных). Причем миофибриллы располагаются в мышечном волокне с такой степенью упорядоченности, что светлые и темные диски соседних миофибрилл точно совпадают. Это и обусловливает исчерченность всего волокна.

Темные и светлые диски в свою очередь состоят из толстых и тонких нитей, которые называются миофиламентами.

Посередине светлого диска, поперечно тонким миофиламентам проходит темная полоска – телофрагма, или Z-линия.

Участок миофибриллы, расположенный между двумя телофрагмами называют саркомером.

Саркомер считается структурно-функциональной единицей миофибриллы - он включает в себя А-диск и расположенные по обе стороны от него две половины I-диска.

Толстые нити (миофиламенты) образованы упорядоченно упакованными молекулами фибриллярного белка миозина. Каждая толстая нить состоит из 300-400 молекул миозина.

Тонкие нити содержат сократимый белок актин и два регуляторных белка: тропонин и тропомиозин.

Механизм мышечного сокращения описывается теорией скользящих нитей, которая была предложена Хью Хаксли.

В покое, при очень низкой концентрации ионов Са ++ в миофибрилле расслабленного волокна толстые и тонкие нити не соприкасаются. Толстые и тонкие филаменты беспрепятственно скользят относительно друг друга, в результате мышечные волокна не сопротивляются пассивному растяжению. Такое состояние свойственно мышце-разгибателю при сокращении соответствующего сгибателя.

Мышечное сокращение вызывается резким повышением концентрации ионов Са ++ и состоит из нескольких этапов:

Ионы Са ++ связыватся с молекулой тропонина, которая смещается, открывая на тонких нитях участки связывания миозина.

Головка миозина прикрепляется к миозин-связывающим участкам тонкой нити.

Головка миозина изменяет конформацию и совершает гребковое движение, продвигающее тонкую нить к центру саркомера.

Головка миозина связывается с молекулой АТФ, что приводит к отделению миозина от актина.

Саркотубулярная система – обеспечивает накопление ионов кальция и является аппаратом передачи возбуждения. Необходима для того волна деполяризации, проходящая по плазмолемме привела к эффективному сокращению миофибрилл. Она состоит из саркоплазматической сети и Т-трубочек.

Саркоплазматическая сеть представляет собой видоизмененую гладкую эндоплазматическую сеть и состоит из системы полостей и канальцев, которая в виде муфты окружает каждую миофибриллу. На границе А- и I-дисков трубочки сливаются, образуя пары плоских терминальных цистерн. Саркоплазматическая сеть выполняет функции депонирования и выделения ионов кальция.

Волна деполяризации, распространяемая по плазмолемме доходит вначале до Т-трубочек. Между стенкой Т-трубочки и терминальной цистерны имеются специализированные контакты, через которые волна деполяризации доходит до мембраны терминальных цистерн, после чего высвобождаются ионы кальция.

Опорный аппарат мышечного волокна представлен элементами цитоскелета, которые обеспечивают упорядоченное расположение миофиламентов и миофибрилл. К ним относятся:

Телофрагма (Z-линия) – область прикрепления тонких миофиламентов двух соседних саркомеров.

Мезофрагма (М-линия) – плотная линия, расположенная в центре А-диска, к ней прикрепляются толстые филаменты.

Кроме того, в составе мышечного волокна имеются белки, стабилизирующие его структуру, например:

Дистрофин – одним концом прикрепляется к актиновым филаментам, а другим – к комплеку гликопротеидов, которые проникают в сарколемму.

Титин – эластический белок, который тянется от М- к Z-линии, препятствует перерастяжению мышцы.

Кроме миосимпласта в состав мышечных волокон входят миосателлитоциты. Это мелкие клетки, которые располагаются между плазмолеммой и базальной мембраной, представляют собой камбиальные элементы скелетной мышечной ткани. Они активизируются при повреждении мышечных волокон и обеспечивают их репаративную регенерацию.

Различают три основных типа волокон:

Тип I (красные)

Тип IIВ (белые)

Тип IIА (промежуточные)

Волокна I типа – красные мышечные волокна, характеризуются высоким содержанием в цитоплазме миоглобина, который и придает им красный цвет, большим числом саркосом, высокой активностью окислительных ферментов(СДГ), пребладанием аэробных процессов.Эти волокна обладают способностью медленного,но длительного тонического сокращения и малой утомляемостью.

Волокна IIВ типа – белые - гликолитические, характеризуютс относительно низким содержанием миоглобина, но высоким –гликогена. Имеют больший диаметр, быстрые, тетанические, с большой силой сокращения, быстро утомляются.

Волокна IIА типа – промежуточные, быстрые, устойчивые к утомлению, окислительно-гликолитические.

Мышца как орган – состоит из мышечных волокон, связанных воедино системой соединительной ткани, сосудов и нервов.

Каждое волокно окружено прослойкой рыхлой соединительной ткани, которая содержит кровеносные и лимфатические капилляры, обеспечивающие трофику волокна. Коллагеновые и ретикулярные волокна эндомизия вплетаются в базальную мембрану волокон.

Перимизий – окружает пучки мышечных волокон. В нем содержатся более крупные сосуды

Эпимизий – фасция. Тонкий соединительно-тканный чехол из плотной соединительной ткани, окружающий всю мышцу.

Физическая нагрузка реализуется в результате согласованных действий скелетной мускулатуры. Рассмотрим основные характеристики их структуры и функции.

Взаимодействие человека с внешней средой не может осуществляться без сокращений его мышц. Производимые при этом движения необходимы как для выполнения простейших манипуляций, так и для выражения самых тонких мыслей и чувств - посредством речи, письма, с помощью мимики или жестов. Масса мышц намного больше, чем других органов; они составляют 40-50% массы тела. Мышцы - это «машины», преобразующие химическую энергию непосредственно в механическую (работу) и в теплоту. Деятельность их, в частности механизм укорочения и генерирования силы, сейчас можно достаточно детально объяснить на молекулярном уровне с использованием физических и химических законов.

Рис 1. Структура скелетных мышц: организация цилиндрических волокон в скелетной мышце, прикрепленной к костям сухожилиями.

Понятие скелетная, или поперечно-полосатая мышца относится к группе мышечных волокон, связанных соединительной тканью (рис. 1 ). Обычно мышцы прикреплены к костям пучками коллагеновых волокон - сухожилиями, находящимися на обоих концах мышцы. В некоторых мышцах одиночные волокна имеют такую же протяженность, как и вся мышца, но в большинстве случаев волокна короче и часто располагаются под углом к продольной оси мышцы. Есть очень длинные сухожилия, они прикреплены к кости, удаленной от конца мышцы. Например, некоторые мышцы, осуществляющие движения пальцев рук, находятся в предплечье; шевеля пальцами, мы чувствуем, как двигаются мышцы кисти. Эти мышцы соединены с пальцами посредством длинных сухожилий

Что такое скелетная мышца?

Один грамм ткани скелетной мышцы содержит примерно 100 мг «сократительных белков» - актина (молекулярная масса 42000) и миозина (молекулярная масса 500 000).

Скелетная мышца, например, бицепс, по виду кажется единым образованием, но на самом деле состоит из тканей нескольких типов. В состав каждой мышцы входят длинные тонкие цилиндрические мышечные волокна (клетки), вытянутые по всей ее длине; поэтому они могут быть очень длинными. Каждая многоядерная мышечная клетка (волокно) окружена параллельными мышечными волокнами, с которыми связана слоем соединительной ткани под названием эндомизий. Эти волокна собраны в пучки, скрепленные слоем соединительной ткани, под названием перимизий. Такая упакованная группа, или связка, волокон называется мышечным пучком. Группы пучков с прилегающими к ним сосудами и нервами связаны друг с другом с помощью еще одного слоя соединительной ткани под названием эпимизий. Собранные вместе и окруженные эпимизием пучки, которые тянутся по всей длине скелетной мышцы, покрыты сверху слоем соединительной ткани, называемым фасцией.

Какова функция фасции в скелетной мышце?

Фасция - это упругая, плотная и прочная соединительнотканная оболочка, которая покрывает мышцу целиком и, выходя за ее пределы, образует фиброзное сухожилие. Фасция образована посредством слияния всех трех внутренних слоев соединительной ткани скелетной мышцы. Фасция отделяет мышцы друг от друга, уменьшает трение при движении и формирует сухожилие, с помощью которого мышца прикрепляется к костному скелету. Этому компоненту мышц обычно не уделяется должного внимания. Тем не менее, многие специалисты полагают, что для свободного неограниченного движения мышцы, а, следовательно, и сустава совершенно необходимо свободное движение фасции.

Рис. 2. Структура скелетных мышц: структурная организация филаментов в волокне скелетной мышцы, создающая картину поперечных полос.

Почему скелетная мышца называется поперечно-полосатой?

При изучении с помощью светового микроскопа, основной характеристикой волокон скелетной мышцы оказалось чередование светлых и темных полос, поперечных по отношению к длинной оси волокна. Поэтому скелетные мышцы были названы поперечно-полосатыми.

Поперечная исчерченность волокон скелетной мышцы обусловлена особым распределением в их цитоплазме многочисленных толстых и тонких «нитей» (филаментов), объединяющихся в цилиндрические пучки диаметром 1-2 мкм - миофибриллы (рис. 2 ). Мышечное волокно практически заполнено миофибриллами, они тянутся по всей его длине и на обоих его концах соединены с сухожилиями. Миофибриллы состоят из сократительных филаментов (белков). Основных сократительных микро-филаментов два - миозин и актин. Структурное расположение этих белков придает скелетной мышце вид перемежающихся светлых и темных полос. Каждая темная полоса (полоса, или диск, А) соответствует участку, где актиновые и миозиновые белки перекрываются, тогда как более светлая полоса - участку, где их перекрытия нет (полоса, или диск, I). Перегородки, называемые Z-пластинками, разделяют их на несколько компартментов-саркомеров - длиной примерно по 2,5 мкм.

Что является структурной единицей мышечной ткани скелетной мышцы?

Структурной единицей мышечной ткани скелетной мышцы являются мышечные клетки, которые существенно отличаются от других мышечных тканей, прежде всего от гладких мышц

Гладкое мышечное волокно - это веретеновидная клетка диаметром от 2 до 10 мкм. В отличие от многоядерных волокон скелетных мышц, которые после завершения дифференцировки уже не могут делиться, гладкие мышечные волокна обладают единственным ядром и способны к делению на протяжении всей жизни организма. Деление начинается в ответ на разнообразные паракринные сигналы, часто - на повреждение ткани.

Поперечно-полосатые мышцы скелета состоят из множества функциональных единиц - мышечных волокон, которые расположены в общем соединительнотканном футляре. Каждое волокно скелетной мышцы - это тонкое (диаметром 0,01-0,1 мм), вытянутое на 2-3 см, многоядерное образование - симпласт-результат слияния многих клеток. Ядра в волокне расположены около его поверхности. Пучки мышечных волокон окружены коллагеновыми волокнами и соединительной тканью; между волокнами также находится коллаген. На конце мышц коллаген вместе с соединительной тканью образует сухожилия, которые служат для прикрепления мышц к разным частям скелета. Каждое волокно окружено мембраной - сарколеммой, которая по своему строению сходна с плазматической мембраной.

Основной особенностью мышечного волокна является наличие в его цитоплазме - саркоплазме большого количества тонких нитей - миофибрилл, расположенных вдоль оси волокна. Миофибриллы состоят из чередующихся светлых и темных участков - дисков, что придает мышечному волокну поперечную исчерченность (полосатость).

Рис 3. Организация миозиновых и актиновых нитей в расслабленном и сократившемся саркомере.

Что такое саркомер?

Это минимальная сократительная единица скелетной мышцы.

Рассмотрим более детальноструктуру саркомеров, которая схематически показана на рис 3 . С помощью светового микроскопа в них можно видеть регулярно чередующиеся поперечные светлые и темные полосы. Согласно теории Хаксли и Хансон, такая поперечная полосатость миофибрилл обусловлена особым взаиморасположением актиновых и миозиновых филаментов. Середину каждого саркомера занимают несколько тысяч «толстых» нитей миозина диаметром примерно по 10 нм. На обоих концах саркомера находятся около 2000 «тонких» (толщиной по 5 нм) нитей актина, прикрепленных к Z-пластинкам наподобие щетинок в щетке.

Толстые филаменты сосредоточены в средней части каждого саркомера, где они лежат параллельно друг другу; эта область выглядит как широкая темная (анизотропная) полоса, называемая А-полосой. В обеих половинах саркомера находится по набору тонких филаментов. Один конец каждого из них прикреплен к так называемой Z-пластинке (или Z-линии, или Z-полосе) - сети из переплетающихся белковых молекул, - а другой конец перекрывается с толстыми филаментами. Саркомер ограничен двумя последовательно расположенными Z-полосами. Таким образом, тонкие филаменты двух соседних саркомеров закреплены на двух сторонах каждой Z-полосы.

В пределах А-полосы каждого саркомера различают еще две полоски. В центре А-полосы видна узкая светлая полоска - Н-зона. Она соответствует промежутку между противостоящими друг другу концами двух наборов тонких филаментов каждого саркомера, т.е. включает только центральные части толстых филаментов. Посередине Н-зоны находится совсем тонкая темная М-линия. Это сеть белков, соединяющих центральные части толстых филаментов. Кроме того, от Z-полосы к М-линии идут филаменты белка титина, связанные одновременно с белками М-линии и с толстыми филаментами. М-линия и титиновые филаменты поддерживают упорядоченную организацию толстых филаментов в середине каждого саркомера. Таким образом, толстые и тонкие филаменты не являются свободными, незакрепленными внутриклеточными структурами.

Рис 4. Функция поперечных мостиков. А. Модель механизма сокращения

Обсудим собственно механизм мышечного сокращения

Каким образом взаимодействуют актин и миозин?

Активные участки молекулы актина, способные связывать глобулярные головки миозина, располагаются на ней на некотором расстоянии друг от друга. Когда эти активные участки открыты, миозиновая головка самопроизвольно связывается с актиновым филаментом и образует поперечный мостик. При снабжении миозиновой головки достаточным количеством энергии глобулярная головка подтягивает актин по направлению к центру саркомера, что часто называют храповым движением. Это движение укорачивает саркомер.

Работа поперечных мостиков (Рис. 4) . Во время сокращения каждая миозиновая головка может связывать миозиновую нить с соседними актиновыми. Движение головок создает объединенное усилие, как бы «гребок», продвигающий актиновые нити к середине саркомера. Сама биполярная организация молекул миозина обеспечивает противоположную направленность скольжения актиновых нитей в левой и правой половинах саркомера. В результате однократного движения поперечных мостиков вдоль актиновой нити саркомер укорачивается только на 2 х 10 нм, т. е. примерно на 1% своей длины. За счет ритмичных отделений и повторных прикреплений миозиновых головок актиновая нить может подтягиваться к середине саркомера, подобно тому, как группа людей тянет длинную веревку, перебирая ее руками. Следовательно, когда принцип «вытягивания веревки» реализуется во множестве последовательных саркомеров, повторяющиеся молекулярные движения поперечных мостиков приводят к макроскопическому движению. При расслаблении мышцы миозиновые головки отделяются от актиновых нитей. Поскольку актиновые и миозиновые нити могут легко скользить друг относительно друга, сопротивление расслабленных мышц растяжению очень низкое. Их можно снова растянуть до исходной длины, приложив совсем небольшое усилие. Следовательно, удлинение мышцы во время расслабления носит пассивный характер.

Рис 5. Функция поперечных мостиков. Б. Модель механизма генерирования силы поперечными мостиками: слева до, справа - после «гребка

Генерирование мышечной силы . Благодаря упругости поперечных мостиков саркомер может развивать силу даже без скольжения нитей относительно друг друга, т. е. в строго изометрических экспериментальных условиях. Рис.5.Б иллюстрирует такой процесс генерирования изометрической силы. Сначала головка миозиновой молекулы прикрепляется к актиновой нити под прямым углом. Затем она наклоняется под углом примерно 45°, возможно, благодаря притяжению между соседними точками прикрепления на ней и на актиновой нити. При этом головка действует как миниатюрный рычаг, приводя внутреннюю упругую структуру поперечного мостика (видимо, «шейки» между головкой и миозиновой нитью) в напряженное состояние. Возникающее в результате упругое растяжение достигает лишь около 10 нм. Упругое натяжение, создаваемое индивидуальным поперечным мостиком, так слабо, что для развития мышечной силы, равной 1 мН, нужно объединить усилия, по крайней мере, миллиарда таких соединенных параллельно мостиков. Они будут тянуть соседние актиновые нити, как команда игроков тянет канат. Даже при изометрическом сокращении поперечные мостики не находятся в непрерывно напряженном состоянии (это наблюдается только при трупном окоченении). На самом деле каждая миозиновая головка уже через сотые или десятые доли секунды отделяется от актиновой нити; однако через такое же короткое время следует новое прикрепление к ней. Несмотря на ритмичное чередование прикреплений и отделений с частотой порядка 5 - 50 Гц, сила, развиваемая мышцей в физиологических условиях, остается неизменной (исключение - летательные мышцы насекомых), так как статистически в каждый момент времени в прикрепленном, обусловливающем напряжение, состоянии находится одно и то же количество мостиков.

Что такое цикл поперечного мостика?

Цикл поперечного мостика - это термин, описывающий взаимодействие глобулярной головки миозина с активным участком молекулы актина. Формированию поперечного мостика способствуют два фактора: повышение внутриклеточной концентрации ионов кальция и присутствие аденозинтрифосфата (АТФ). Один цикл поперечного мостика состоит из:

активации миозиновой головки;

обнажения активного участка молекулы актина в присутствии кальция;

самопроизвольного формирования поперечного мостика;

поворота глобулярной головки, сопровождающегося продвижением актиновой нити и укорочением саркомера;

отцепления поперечного мостика.

Цикл после завершения может повторяться или останавливаться. Поворот миозиновой головки называется также рабочим ходом.

Чем предотвращается спонтанное взаимодействие миозина и актина после отцепления поперечного мостика? Каков механизм циклического формированию поперечного мостика – повторяющегося взаимодействия глобулярной головки миозина с активным участком молекулы актина?

Для понимания всего этого необходимо внимательнее рассмотреть строение миозина и, особенно, актина.

Рис. 6. Строение миозина

Это единое название большой семьи протеинов, имеющих определенные отличия в клетках разных тканей. Миозин присутствует у всех эукариотов. Около 60 лет назад было известно два типа миозина, которые сейчас называют миозин I и миозин II. Миозин II был первым из числа открытых миозинов, и именно он принимает участие в мышечном сокращении. Позднее были открыты миозин I и миозин V (рис. 6 В ). В последнее время показано, что миозин II участвует в мышечном сокращении, тогда как миозин I и миозин V вовлечены в работу подмембранного (кортикального) цитоскелета. В настоящее время идентифицировано более 10 классов миозина. На рисунке 6 Г показано два варианта схемы строения миозина, который состоит из головки, шейки и хвоста. Молекула миозина состоит из двух больших полипептидов (тяжелых цепей) и четырех меньших (легких цепей). Эти полипептиды составляют молекулу с двумя глобулярными «головками», которые содержат оба вида цепей, и длинным стержнем («хвостом») из двух переплетенных тяжелых цепей. Хвост каждой молекулы миозина располагается вдоль оси толстого филамента, а две глобулярные головки выступают по бокам.На каждой глобулярной головке находятся по два участка связывания: для актина и для АТФ. Участки связывания АТФ обладают также свойствами фермента АТФазы, гидролизующей связанную молекулу АТФ.

Рис 7. Строение актина

Молекула актина

Это глобулярный белок, состоящий из одного полипептида, который полимеризуется с другими молекулами актина и образует две цепи, обвивающие друг друга (рис. 7 А ). Такая двойная спираль представляет собой остов тонкого филамента. На каждой молекуле актина есть участок связывания миозина. В покоящемся мышечном волокне взаимодействие между актином и миозином предотвращают два белка - тропонин и тропомиозин (рис. 7 Б ).

Тропонин - гетеротримерный белок. Он состоит из тропонина Т (отвечает за связывание с одиночной молекулой тропомиозина), тропонина С (связывает ион Са 2+) и тропонина I (связывает актин и ингибирует сокращение). Каждая молекула тропомиозина связана с одной гетеротримерной молекулой тропонина, которая регулирует доступ к участкам связывания миозина на семи мономерах актина, прилегающих к молекуле тропомиозина.

Чем предотвращается спонтанное взаимодействие миозина и актина?

В желобках двойной спирали актина располагаются два дополнительных регуляторных белка, которые предотвращают самопроизвольное взаимодействие актина и миозина. Эти белки, тропонин и тропомиозин, играют важную роль в процессе сокращения скелетной мышцы. Функция тропомиозина заключается в том, что в покое он закрывает (защищает) активные участки актинового филамента. Тропонин имеет три связывающих участка: один служит для связывания ионов кальция (тропонин С), другой прочно прикреплен к молекуле тропомиозина (тропонин Т), третий связан с актином (тропонин I). В покое эти регуляторные белки закрывают связывающие участки на молекуле актина и препятствуют формированию поперечных мостиков. Все эти микроструктурные компоненты вместе с митохондриями и другими органеллами клетки окружены клеточной мембраной, называемой сарколеммой.

Рис. 8. Действие Са 2+ во время активации миофибриллы.

А.Актиновая и миозиновая нити на продольном сечении волокна. Б. Они же на его поперечном сечении.

Исследования с помощью рентгеноструктурного анализа (малоугловое рентгеновское рассеяние) показали, что в отсутствие Са 2+ , т. е. при расслабленном состоянии миофибрилл, длинные молекулы тропомиозина располагаются так, что блокируют прикрепление поперечных миозиновых головок к актиновым нитям. И напротив, когда Са 2+ связывается с тропонином, тропомиозин попадает в желобок между двумя мономерами актина, обнажая участки прикрепления для поперечных мостиков (Рис . 8).

Если активные участки закрыты, то каким образом взаимодействуют актин и миозин?

Когда внутри клетки повышается концентрация ионов кальция, они связываются с тропонином С. Это приводит к изменениям конформации тропонина. В результате изменяется также трехмерная структура тропомиозина и обнажается активный участок молекулы актина. Сразу после этого головка миозина самопроизвольно связывается с активным участком актинового филамента, образуя поперечный мостик, который начинает двигаться и способствует укорочению саркомера. Наличие или отсутствие в клетке кальция частично регулируется сарколеммой (специализированной клеточной мембраной скелетной мышцы).

Какова функция кальция в скелетных мышцах?

Кальций обеспечивает открытие участков актиновой нити, связывающих миозин. Ионы кальция внутри клетки хранятся в СР(саркоплазматическом ретикуломе) и высобождаются после деполяризующей стимуляции. После высвобождения кальций диффундирует и связывается с белком - тропонином С. В результате конформация белка изменяется, он тянет молекулу тропомиозина и обнажает активные участки молекулы актина. Активные участки остаются открытыми все время, пока продолжается связывание кальция с тропонином С.

Рис. 9. Схема организации саркоплазматического ретикулума, поперечных трубочек и миофибрилл.

Хранение и высвобождение ионов кальция . Расслабленная мышца содержит более 1 мкмоль Са 2+ на 1 г сырой массы. Если бы соли кальция не были изолированы в особых внутриклеточных хранилищах, обогащенные его ионами мышечные волокна находились бы в состоянии непрерывного сокращения.

Источником поступления Са 2+ в цитоплазму служит саркоплазматический ретикулум мышечного волокна.

Саркоплазматический ретикулум мышц гомологичен эндоплазматическому ретикулуму других клеток. Он располагается вокруг каждой миофибриллы наподобие «рваного рукава», сегментами которого окружены А- и I-полосы (Рис. 9). Концевые части каждого сегмента расширяются в виде так называемых латеральных мешков (терминальных цистерн), соединенных друг с другом серией более тонких трубок. В латеральных мешках депонируется Са 2+ , высвобождающийся после возбуждения плазматической мембраны (рис. 10 ).

Рис. 10. Схема анатомической структуры поперечных трубочек и саркоплазматического ретикулума в индивидуальном волокне скелетной мышцы

Что такое поперечные трубочки (Т-трубочки) ?

Инвагинации на поверхности сарколеммы, расположенные на некотором расстоянии друг от друга. Благодаря Т-трубочкам внеклеточная жидкость может тесно контактировать с внутренними микроструктурами клетки. Т-трубочки представляют собой продолжение сарколеммы и также способны передавать потенциал действия на внутреннюю поверхность клетки. С Т-трубочками тесно взаимодействует саркоплазматический ретикулум (СР).

Что такое саркоплазматический ретикулум?

Специализированный эндоплазматический ретикулум, который состоит из везикул, ориентированных вдоль сократительных волокон скелетной мышцы. Эти везикулы осуществляют хранение, высвобождение во внутриклеточную жидкость и обратный захват ионов кальция. Специализированные расширенные участки СР называются концевыми цистернами. Концевые цистерны находятся в непосредственной близости от Т-трубочки и вместе с СР составляют структуру под названием триада. Особенности строения сарколеммы и триад играют важную роль в обеспечении саркомера ионами кальция, необходимыми для цикла поперечных мостиков.

Рис. 11. Роль саркоплазматического ретикулума в механизме сокращения скелетной мышцы

Возникнув в плазматической мембране (рис. 11 ), потенциал действия быстро распространяется по поверхности волокна и по мембране Т-трубочек вглубь клетки. Достигнув области Т-трубочек, прилегающей к латеральным мешкам, потенциал действия активирует потенциалзависимые «воротные» белки мембраны Т-трубочек, физически или химически сопряженные с кальциевыми каналами мембраны латеральных мешков. Таким образом, деполяризация мембраны Т-трубочек, обусловленная потенциалом действия, приводит к открыванию кальциевых каналов мембраны латеральных мешков, содержащих Са 2+ в высокой концентрации, и ионы Са 2+ выходят в цитоплазму. Повышение цитоплазматического уровня Са 2+ обычно бывает достаточным для активации всех поперечных мостиков мышечного волокна.

Процесс сокращения продолжается, пока ионы Са 2+ связаны с тропонином, т.е. до тех пор, пока их концентрация в цитоплазме не вернется к низкому исходному значению. Мембрана саркоплазматического ретикулума содержит Са-АТФазу - интегральный белок, осуществляющий активный транспорт Са 2+ из цитоплазмы обратно в полость саркоплазматического ретикулума. Как только что говорилось, Са 2+ высвобождается из ретикулума в результате распространения потенциала действия по Т-трубочкам; для возвращения Са 2+ в ретикулум нужно гораздо больше времени, чем для его выхода. Именно поэтому, повышенная концентрация Са 2+ в цитоплазме сохраняется в течение некоторого времени, и сокращение мышечного волокна продолжается после завершения потенциала действия.

Подведем итог. Сокращение обусловлено высвобождением ионов Са 2+ , хранящихся в саркоплазматическом ретикулуме. Когда Са 2+ поступает обратно в ретикулум, сокращение заканчивается и начинается расслабление.

Каковы особенности сарколеммы?

Электрический заряд на сарколемме, как и на других селективно проницаемых и возбудимых мембранах, образуется вследствие неодинакового распределения ионов. Проницаемость сарколеммы изменяется при стимуляции ацетилхолиновых рецепторов, расположенных в нервно-мышечном соединении. После достаточной стимуляции сарколемма может проводить деполяризующий сигнал (потенциал действия) по всей своей длине, а также в уникальную проводящую систему Т-трубочек.

Рис. 12. Феномен электромеханического сопряжения

Чтобы целенаправленно развить силу, нужно иметь представление о мышечной системе человека. Мышечная система имеет важнейшее значение в жизнедеятельности организма.

Скелетная мускулатура человека состоит из мышечных волокон нескольких типов, отличающихся друг от друга структурно-функциональными характеристиками. В настоящее время выделяют четыре основных типа мышечных волокон.

Медленные фазические волокна окислительного типа. Волокна этого типа характеризуются большим содержанием белка миоглобина, который способен связывать О2 (близок по своим свойствам к гемоглобину). Мышцы, которые преимущественно состоят из волокон этого типа, за их темно-красный цвет называют красными. Они выполняют очень важную функцию поддержания позы человека. Предельное утомление у волокон данного типа и, следовательно, мышц наступает очень медленно, что обусловлено наличием миоглобина и большого числа митохондрий. Восстановление функции после утомления происходит быстро.

Быстрые фазические волокна окислительного типа. Мышцы, которые преимущественно состоят из волокон этого типа, выполняют быстрые сокращения без заметного утомления, что объясняется большим количеством митохондрий в этих волокнах и способностью образовывать АТФ путем окислительного фосфорилирования. Как правило, число волокон, входящих в состав нейромоторной единицы, в этих мышцах меньше, чем в предыдущей группе. Основное назначение мышечных волокон данного типа заключается в выполнении быстрых, энергичных движении.

Для мышечных волокон всех перечисленных групп характерно наличие одной, в крайнем случае, нескольких концевых пластинок, образованных одним двигательным аксоном.

Скелетная мускулатура является составной частью опорно-двигательного аппарата человека. При этом мышцы выполняют следующие функции:

- обеспечивают определенную позу тела человека;

- перемещают тело в пространстве;

- перемещают отдельные части тела относительно друг друга;

- являются источником тепла, выполняя терморегуляционную функцию.

Основные группы скелетных мышц

Мышцы человека бывают двух видов - гладкие и поперечнополосатые. Нa pисунках 1 и 2 Мак-Комас А. Дж. Скелетные мышцы. - Киев: Олимпийская литература, 2001. - 107 с. пpедставлена схема мышечной системы человека.

Рисунок 1 Рисунок 2

Главные мышцы человека: 1 - мышцы, осуществляющие движение кисти и пальцев; 2 - двуглавая мышца меча; 3 - трехглавая мышца меча; 4 - дельтовидная мышца; 5 - большая грудная мышца; 6 - большая круглая мышца; 7 - широчайшая мышца спины; 8 - трапециевидная мышца; 9 - передняя зубчатaя мышца; 10 - грудинo-ключично-сосцевидная мышца; 11 - лестничные мышцы; 12 - прямая мышца живота; 13 - наружная косая мышца; 14 - большая ягодичная мышца; 15 - двуглавая мышца бедра; 16 - полусухожильная мышца; 17 - мышца натягиватель широкой фасции бедра; 18 - портняжная мышца; 19 - четырехглавая мышца бедра; 20 - приводящие мышцы бедра; 21 - трехглавая мышца голени (21А - икроножная мышца, 21б - камбаловидная мышца); 22 - передняя большеберцовая мышца; 23 - мышцы стопы.

Гладкие мышцы покрывают стенки кровеносных сосудов, а также внутренние органы. Их работа, как правило, не зависит от воли человека. Сокращаются они относительно медленно, но очень выносливы. Мышцы скелетной мускулатуры могут быстро сокращаться и относительно быстро утомляться. Скелетная мышца состоит из различного числа мышечных клеток. Эта мышца прикреплена к скелету c помощью сухожилия c двух концов. Мышечные волокна собраны в пучок и окружены соединительной тканью, которая переходит в сухожилие. Мышцы человека обильно снабжены кровеносными сосудами и нервами. Особо следует сказать o сердечной мышце, состоящей из мышечных волокон. Как и гладкие мышцы; сердечная мышца работает без относительного участия воли человека. Выносливость сердца очень велика.

Строение и свойства скелетных мышц

Строение скелетных мышц. Скелетные мышцы состоят из группы мышечных пучков. Каждый из них включает тысячи мышечных волокон с диаметром от 20 до 100 мкм и длиной до 12-16 см. Каждое волокно окружено (покрыто) истинной клеточной оболочкой - сарколеммой и содержит от 1000 до 2000 и более плотно упакованных миофибрилл (диаметром 0,5-2 мкм). Шувалова Н.В. Строение человека. - М.: Олма-пресс, 2000. - 99 с.

Под световым микроскопом миофибриллы представляют образования, состоящие из правильно чередующихся между собой темных и светлых дисков.

Диски А называются анизотропными (обладают двойным лучепреломлением), диски I - изотропными (почти не обладают двойным лучепреломлением). Длина А - дисков постоянна, длина I - дисков зависит от стадии сокращения мышечного волокна.

В середине каждого изотропного диска находится Z - пластинка (мембрана). Эти Z-пластинки разделяют каждую миофибриллу на 20 тыс. участков - сакромеров, длина которых около 2,5 мкм. За счет чередования изотропных и анизотропных сегментов каждая миофибрилла имеет поперечную исчерченность.

В середине каждого сакромера расположено около 2500 толстых нитей белка миозина диаметром около 10 нм. На обоих концах сакромера к Z-мембране прикреплены около 2500 тонких, диаметром около 5 нм, нитей белка актина. Нити актина своими концами частично входят между миозиновыми нитями.

В центральной части анизотропного участка актиновые и миозиновые нити не перекрывают друг друга.

Структурно-функциональной сократительной единицей миофибриллы является сакромер - повторяющийся участок фибриллы, ограниченный двумя пластинками Z.

В поперечнополосатых мышцах содержится 100 мг сократительных белков, главным образом миозина и актина, образующих акто-миозиновый комплекс. К другим сократительным белкам относятся тропомиозин и комплекс тропонина, содержащиеся в тонких нитях.

В мышцах содержатся также миоглобин, гликолитические ферменты, АТФ, ряд других растворимых белков.

Волокна скелетных мышц отличаются цветом. Красные волокна богаты саркоплазмой и содержат мало миофибрилл, в белых волокнах много миофибрилл и относительно мало саркоплазмы.

В скелетных мышцах оканчиваются соматические и вегетативные нервы. Двигательный нерв разветвляясь, заканчивается у каждого мышечного волокна. В волокно входит только окончание осевого цилиндра, которое не проникает через сарколемму, а вдавливает ее, образуя специальную структуру - моторную бляшку, нервно-мышечный синапс или концевую двигательную пластинку. Чувствительные окончания в скелетных мышцах представлены нервно-мышечным веретеном, которые одним концом прикреплены к кости. Это рецепторный прибор, содержащий рецепторы мышц. Любое изменение мышечных волокон вызывает изменение активности рецепторов нервно-мышечного веретена.

Вопрос 39- 42

Спинной мозг является частью центральной нервной системы, которая связана с периферией тела – кожей, мышцами и некоторыми другими внутренними органами. Эти связи осуществляются у человека посредством 31-33 пар нервов, отходящих от спинного мозга, который соответственно делится на 31-32 отрезка (сегмента) Каждый из этих сегментов иннервирует определенный участок тела. Существует 8 шейных сегментов, 12 грудных, 5 поясничных, 5 крестцовых и 1-3 копчиковых. В спинной мозг поступает информация с периферии, а от спинного мозга к мышцам идут распоряжения совершать те или иные движения. Центральная часть спинного мозга состоит из серого вещества, которое на поперечном разрезе напоминает бабочку с развернутыми крыльями. Серое вещество спинного мозга представляет собой концентрацию огромного количества нервных клеток - нейронов. В каждом сегменте десятки или сотни тысяч нейронов, а всего в спинном мозгу человека их более тринадцати миллионов. Серое вещество мозга окружено белым веществом, состоящим из нервных волокон - отростков нейронов. Несмотря на то, что нейроны очень малы и обычно не превышают в диаметре 0,1 миллиметра, длина их отростков порой доходит до полутора метров. «Бабочка» серого вещества состоит из различных клеток. В передних ее отделах располагаются крупные двигательные клетки, длинные волокна, выходящие из спинного мозга и идущие к мышцам. Выходя из спинного мозга, эти волокна собираются в пучки, которые называются передними корешками. Из каждого сегмента выходит одна пара передних корешков: один - направо, другой - налево. Чувствительные волокна, входящие в каждый сегмент, образуют пару задних корешков. В спинном мозгу часть чувствительных волокон направляется вверх, в головной мозг. Другая часть входит в серое вещество; здесь чувствительные волокна оканчиваются или на двигательных клетках, или на мелких промежуточных, или вставочных, клетках, которые играют очень большую роль в работе спинного мозга. Раздражение чувствительных нервных окончаний кожи, мышц, суставов, сухожилий вызывает распространяющийся по нервному волокну сигнал - нервный импульс. Импульсы, приходящие в спинной мозг по чувствительным волокнам задних корешков, возбуждают вставочные и двигательные клетки; отсюда по двигательным волокнам передних корешков импульсы бегут к мышцам и вызывают их сокращение. Так осуществляются простые рефлексы. Рефлексами (от латинского слова reflexio - отражение) физиологи назвали реакции организма на раздражения, осуществляемые через центральную нервную систему. Следовательно, одна из основных функций спинного мозга - рефлекторная. Путь, по которому идут нервные импульсы от периферии в спинной мозг и от него - к мышцам, называют рефлекторной дугой. Есть ряд рефлексов, у которых дуги отлично изучены. Полученные данные невропатологии используют в практике. Например, когда врач ударяет молоточком по сухожилию около коленной чашечки пациента, он, изучая сухожильный коленный рефлекс, судит о функциональном состоянии обусловленного участка спинного мозга. Но спинной мозг не автономная рефлекторная система. Его работа протекает под постоянным контролем головного мозга. Спинной мозг связан с различными отделами головного мозга посредством проводящих путей - длинных пучков нервных волокон белого вещества. По одним путям сигналы с периферии передаются вверх, к головному мозгу, по другим - команды идут сверху вниз, из головного в спинной мозг. Сложные координированные движения организует и направляет вся центральная нервная система. Тончайшие движения рук пианиста, отточенные па балерины - все это результат действия потока импульсов от головного мозга в спинной, а от него - к мышцам. Итак, другая важнейшая функция спинного мозга – проводниковая. Большая роль в этом принадлежит промежуточным, или вставочным, нейронам. Они не только передают сигналы с чувствительных нейронов на двигательные. Вставочные клетки принимают и перерабатывают информацию от различных мышц и участков кожи. На них сигналы с периферии встречаются также с импульсами из головного мозга. Вставочные клетки посылают возбуждающие сигналы к определенным группам двигательных клеток и одновременно тормозят активность других групп. Благодаря этому и становится возможной тончайшая координация движений человека.

Загрузка...