ecosmak.ru

The main parts of the atmosphere. Layers of the atmosphere in order from the surface of the earth

The gaseous envelope that surrounds our planet Earth, known as the atmosphere, consists of five main layers. These layers originate on the surface of the planet, from sea level (sometimes below) and rise to outer space in the following sequence:

  • Troposphere;
  • Stratosphere;
  • Mesosphere;
  • Thermosphere;
  • Exosphere.

Diagram of the main layers of the Earth's atmosphere

In between each of these main five layers are transitional zones called "pauses" where changes in air temperature, composition and density occur. Together with pauses, the Earth's atmosphere includes a total of 9 layers.

Troposphere: where the weather happens

Of all the layers of the atmosphere, the troposphere is the one with which we are most familiar (whether you realize it or not), since we live at its bottom - the surface of the planet. It envelops the surface of the Earth and extends upwards for several kilometers. The word troposphere means "change of the ball". A very fitting name, as this layer is where our day to day weather happens.

Starting from the surface of the planet, the troposphere rises to a height of 6 to 20 km. The lower third of the layer closest to us contains 50% of all atmospheric gases. It is the only part of the entire composition of the atmosphere that breathes. Due to the fact that the air is heated from below by the earth's surface, absorbing thermal energy Sun, with increasing altitude, the temperature and pressure of the troposphere decrease.

At the top is a thin layer called the tropopause, which is just a buffer between the troposphere and stratosphere.

Stratosphere: home of ozone

The stratosphere is the next layer of the atmosphere. It extends from 6-20 km to 50 km above the earth's surface. This is the layer in which most commercial airliners fly and balloons travel.

Here, the air does not flow up and down, but moves parallel to the surface in very fast air currents. Temperatures increase as you ascend, thanks to an abundance of naturally occurring ozone (O3), a by-product of solar radiation, and oxygen, which has the ability to absorb the sun's harmful ultraviolet rays (any rise in temperature with altitude is known in meteorology as an "inversion") .

Because the stratosphere has warmer temperatures at the bottom and cooler temperatures at the top, convection (vertical movements of air masses) is rare in this part of the atmosphere. In fact, you can view a storm raging in the troposphere from the stratosphere, because the layer acts as a "cap" for convection, through which storm clouds do not penetrate.

The stratosphere is again followed by a buffer layer, this time called the stratopause.

Mesosphere: middle atmosphere

The mesosphere is located approximately 50-80 km from the Earth's surface. Upper area The mesosphere is the coldest natural place on Earth, where temperatures can drop below -143°C.

Thermosphere: upper atmosphere

The mesosphere and mesopause are followed by the thermosphere, located between 80 and 700 km above the surface of the planet, and containing less than 0.01% of the total air in the atmospheric shell. Temperatures here reach up to + 2000 ° C, but due to the strong rarefaction of air and the lack of gas molecules for heat transfer, these high temperatures perceived as very cold.

Exosphere: the boundary of the atmosphere and space

At an altitude of about 700-10,000 km above the earth's surface is the exosphere - the outer edge of the atmosphere, bordering space. Here meteorological satellites revolve around the Earth.

How about the ionosphere?

The ionosphere is not a separate layer, and in fact this term is used to refer to the atmosphere at an altitude of 60 to 1000 km. It includes the uppermost parts of the mesosphere, the entire thermosphere and part of the exosphere. The ionosphere gets its name because it is in this part of the atmosphere that the Sun's radiation is ionized as it passes through magnetic fields Lands on and . This phenomenon is observed from the earth as the northern lights.

Space is filled with energy. Energy fills space unevenly. There are places of its concentration and discharge. This way you can estimate the density. The planet is an ordered system, with the maximum density of matter in the center and with a gradual decrease in concentration towards the periphery. Interaction forces determine the state of matter, the form in which it exists. Physics describes the state of aggregation of substances: solid, liquid, gas, and so on.

The atmosphere is the gaseous medium that surrounds the planet. The Earth's atmosphere allows free movement and allows light to pass through, creating a space in which life thrives.


The area from the earth's surface to a height of approximately 16 kilometers (less from the equator to the poles, also depends on the season) is called the troposphere. The troposphere is the layer that contains about 80% of the air in the atmosphere and almost all of the water vapor. It is here that the processes that shape the weather take place. Pressure and temperature decrease with height. The reason for the decrease in air temperature is an adiabatic process, when the gas expands, it cools. At the upper boundary of the troposphere, values ​​can reach -50, -60 degrees Celsius.

Next comes the Stratosphere. It extends up to 50 kilometers. In this layer of the atmosphere, the temperature increases with height, acquiring a value at the top point of about 0 C. The temperature increase is caused by the process of absorption of ultraviolet rays by the ozone layer. Radiation causes a chemical reaction. Oxygen molecules break down into single atoms that can combine with normal oxygen molecules to form ozone.

Radiation from the sun with wavelengths between 10 and 400 nanometers is classified as ultraviolet. The shorter the wavelength of UV radiation, the greater the danger it poses to living organisms. Only a small fraction of the radiation reaches the Earth's surface, moreover, the less active part of its spectrum. This feature of nature allows a person to get a healthy sun tan.

next layer atmosphere is called the mesosphere. Limits from approximately 50 km to 85 km. In the mesosphere, the concentration of ozone, which could trap UV energy, is low, so the temperature begins to fall again with height. At the peak point, the temperature drops to -90 C, some sources indicate a value of -130 C. Most meteoroids burn up in this layer of the atmosphere.

The layer of the atmosphere that stretches from a height of 85 km to a distance of 600 km from the Earth is called the Thermosphere. The thermosphere is the first to encounter solar radiation, including the so-called vacuum ultraviolet.

Vacuum UV is delayed by the air, thereby heating this layer of the atmosphere to enormous temperatures. However, since the pressure here is extremely low, this seemingly incandescent gas does not have the same effect on objects as it does under conditions on the earth's surface. On the contrary, objects placed in such an environment will cool down.

At an altitude of 100 km, the conditional line "Karman line" passes, which is considered to be the beginning of space.

Auroras occur in the thermosphere. In this layer of the atmosphere, the solar wind interacts with the planet's magnetic field.

The last layer of the atmosphere is the Exosphere, an outer shell that stretches for thousands of kilometers. The exosphere is practically an empty place, however, the number of atoms wandering here is an order of magnitude greater than in interplanetary space.

The person breathes air. normal pressure- 760 millimeters mercury column. At an altitude of 10,000 m, the pressure is about 200 mm. rt. Art. At this altitude, a person can probably breathe, at least not for a long time, but this requires preparation. The state will obviously be inoperable.

The gas composition of the atmosphere: 78% nitrogen, 21% oxygen, about a percent argon, everything else is a mixture of gases representing the smallest fraction of the total.


10.045×10 3 J/(kg*K) (in the temperature range from 0-100°C), C v 8.3710*10 3 J/(kg*K) (0-1500°C). The solubility of air in water at 0°C is 0.036%, at 25°C - 0.22%.

Composition of the atmosphere

History of the formation of the atmosphere

Early history

At present, science cannot trace all the stages of the formation of the Earth with 100% accuracy. According to the most common theory, the Earth's atmosphere has been in four different compositions over time. Initially, it consisted of light gases (hydrogen and helium) captured from interplanetary space. This so-called primary atmosphere. At the next stage, active volcanic activity led to the saturation of the atmosphere with gases other than hydrogen (hydrocarbons, ammonia, water vapor). This is how secondary atmosphere. This atmosphere was restorative. Further, the process of formation of the atmosphere was determined by the following factors:

  • constant leakage of hydrogen into interplanetary space;
  • chemical reactions occurring in the atmosphere under the influence of ultraviolet radiation, lightning discharges and some other factors.

Gradually, these factors led to the formation tertiary atmosphere, characterized by a much lower content of hydrogen and a much higher content of nitrogen and carbon dioxide (formed as a result of chemical reactions from ammonia and hydrocarbons).

The emergence of life and oxygen

With the advent of living organisms on Earth as a result of photosynthesis, accompanied by the release of oxygen and the absorption of carbon dioxide, the composition of the atmosphere began to change. However, there are data (an analysis of the isotopic composition of atmospheric oxygen and that released during photosynthesis) that testify in favor of the geological origin of atmospheric oxygen.

Initially, oxygen was spent on the oxidation of reduced compounds - hydrocarbons, the ferrous form of iron contained in the oceans, etc. At the end of this stage, the oxygen content in the atmosphere began to grow.

In the 1990s, experiments were carried out to create a closed ecological system (“Biosphere 2”), during which it was not possible to create a stable system with a single air composition. The influence of microorganisms led to a decrease in the level of oxygen and an increase in the amount of carbon dioxide.

Nitrogen

Education a large number N 2 is due to the oxidation of the primary ammonia-hydrogen atmosphere by molecular O 2, which began to come from the surface of the planet as a result of photosynthesis, as expected, about 3 billion years ago (according to another version, atmospheric oxygen is of geological origin). Nitrogen is oxidized to NO in the upper atmosphere, used in industry and bound by nitrogen-fixing bacteria, while N 2 is released into the atmosphere as a result of the denitrification of nitrates and other nitrogen-containing compounds.

Nitrogen N 2 is an inert gas and reacts only under specific conditions (for example, during a lightning discharge). It can be oxidized and converted into a biological form by cyanobacteria, some bacteria (for example, nodule bacteria that form rhizobial symbiosis with legumes).

Oxidation of molecular nitrogen by electric discharges is used in the industrial production of nitrogen fertilizers, and it also led to the formation of unique saltpeter deposits in the Chilean Atacama Desert.

noble gases

Fuel combustion is the main source of pollutant gases (CO , NO, SO 2). Sulfur dioxide is oxidized by air O 2 to SO 3 in the upper layers of the atmosphere, which interacts with H 2 O and NH 3 vapors, and the resulting H 2 SO 4 and (NH 4) 2 SO 4 return to the Earth's surface along with precipitation. The use of internal combustion engines leads to significant air pollution with nitrogen oxides, hydrocarbons and Pb compounds.

Aerosol pollution of the atmosphere is due to both natural causes (volcanic eruptions, dust storms, sea ​​water and pollen particles of plants, etc.), and economic activity human (extraction of ores and building materials, fuel combustion, cement production, etc.). Intensive large-scale removal of particulate matter into the atmosphere is one of the possible causes planetary climate change.

The structure of the atmosphere and the characteristics of individual shells

The physical state of the atmosphere is determined by weather and climate. The main parameters of the atmosphere: air density, pressure, temperature and composition. As altitude increases, air density and atmospheric pressure decrease. The temperature also changes with the change in altitude. Vertical structure atmosphere is characterized by different temperature and electrical properties, different air conditions. Depending on the temperature in the atmosphere, the following main layers are distinguished: troposphere, stratosphere, mesosphere, thermosphere, exosphere (scattering sphere). The transitional regions of the atmosphere between adjacent shells are called the tropopause, stratopause, etc., respectively.

Troposphere

Stratosphere

Most of the short-wavelength part of ultraviolet radiation (180-200 nm) is retained in the stratosphere and the energy of short waves is transformed. Under the influence of these rays, magnetic fields change, molecules break up, ionization, new formation of gases and other chemical compounds occur. These processes can be observed in the form of northern lights, lightning, and other glows.

In the stratosphere and higher layers, under the influence of solar radiation, gas molecules dissociate - into atoms (above 80 km, CO 2 and H 2 dissociate, above 150 km - O 2, above 300 km - H 2). At an altitude of 100-400 km, ionization of gases also occurs in the ionosphere; at an altitude of 320 km, the concentration of charged particles (O + 2, O - 2, N + 2) is ~ 1/300 of the concentration of neutral particles. In the upper layers of the atmosphere there are free radicals - OH, HO 2, etc.

There is almost no water vapor in the stratosphere.

Mesosphere

Up to a height of 100 km, the atmosphere is a homogeneous, well-mixed mixture of gases. In higher layers, the distribution of gases in height depends on their molecular masses, the concentration of heavier gases decreases faster with distance from the Earth's surface. Due to the decrease in gas density, the temperature drops from 0°С in the stratosphere to −110°С in the mesosphere. However, the kinetic energy of individual particles at altitudes of 200–250 km corresponds to a temperature of ~1500°C. Above 200 km, significant fluctuations in temperature and gas density are observed in time and space.

At an altitude of about 2000-3000 km, the exosphere gradually passes into the so-called near space vacuum, which is filled with highly rarefied particles of interplanetary gas, mainly hydrogen atoms. But this gas is only part of the interplanetary matter. The other part is composed of dust-like particles of cometary and meteoric origin. In addition to these extremely rarefied particles, electromagnetic and corpuscular radiation of solar and galactic origin penetrates into this space.

The troposphere accounts for about 80% of the mass of the atmosphere, the stratosphere for about 20%; the mass of the mesosphere is no more than 0.3%, the thermosphere is less than 0.05% of the total mass of the atmosphere. Based on the electrical properties in the atmosphere, the neutrosphere and ionosphere are distinguished. It is currently believed that the atmosphere extends to an altitude of 2000-3000 km.

Depending on the composition of the gas in the atmosphere, they emit homosphere And heterosphere. heterosphere- this is an area where gravity affects the separation of gases, since their mixing at such a height is negligible. Hence follows the variable composition of the heterosphere. Below it lies a well-mixed, homogeneous part of the atmosphere called the homosphere. The boundary between these layers is called turbopause, it lies at an altitude of about 120 km.

Atmospheric properties

Already at an altitude of 5 km above sea level, an untrained person develops oxygen starvation and, without adaptation, a person's performance is significantly reduced. This is where the physiological zone of the atmosphere ends. Human breathing becomes impossible at an altitude of 15 km, although up to about 115 km the atmosphere contains oxygen.

The atmosphere provides us with the oxygen we need to breathe. However, due to the drop in the total pressure of the atmosphere, as you rise to a height, respectively, decreases and partial pressure oxygen.

The human lungs constantly contain about 3 liters of alveolar air. The partial pressure of oxygen in the alveolar air at normal atmospheric pressure is 110 mm Hg. Art., pressure of carbon dioxide - 40 mm Hg. Art., and water vapor −47 mm Hg. Art. With increasing altitude, the oxygen pressure drops, and the total pressure of water vapor and carbon dioxide in the lungs remains almost constant - about 87 mm Hg. Art. The flow of oxygen into the lungs will completely stop when the pressure of the surrounding air becomes equal to this value.

At an altitude of about 19-20 km, the atmospheric pressure drops to 47 mm Hg. Art. Therefore, at this height, water and interstitial fluid begin to boil in the human body. Outside the pressurized cabin at these altitudes, death occurs almost instantly. Thus, from the point of view of human physiology, "space" begins already at an altitude of 15-19 km.

Dense layers of air - the troposphere and stratosphere - protect us from the damaging effects of radiation. With sufficient rarefaction of air, at altitudes of more than 36 km, ionizing radiation has an intense effect on the body - primary cosmic rays; at altitudes of more than 40 km, the ultraviolet part of the solar spectrum, which is dangerous for humans, operates.

Encyclopedic YouTube

    1 / 5

    ✪ Earth spaceship(Episode 14) - Atmosphere

    ✪ Why wasn't the atmosphere pulled into the vacuum of space?

    ✪ Entry into the Earth's atmosphere of the spacecraft "Soyuz TMA-8"

    ✪ Atmosphere structure, meaning, study

    ✪ O. S. Ugolnikov "Upper atmosphere. Meeting of the Earth and space"

    Subtitles

Atmosphere boundary

The atmosphere is considered to be that area around the Earth in which the gaseous medium rotates together with the Earth as a whole. The atmosphere passes into interplanetary space gradually, in the exosphere, starting at an altitude of 500-1000 km from the Earth's surface.

According to the definition proposed by the International Aviation Federation, the boundary between the atmosphere and space is drawn along the Karmana line, located at an altitude of about 100 km, above which air flights become completely impossible. NASA uses the 122 kilometers (400,000 ft) mark as the boundary of the atmosphere, where the shuttles switch from propulsion maneuvering to aerodynamic maneuvering.

Physical properties

In addition to the gases listed in the table, the atmosphere contains Cl 2 (\displaystyle (\ce (Cl2))) , SO 2 (\displaystyle (\ce (SO2))) , NH 3 (\displaystyle (\ce (NH3))) , CO (\displaystyle ((\ce (CO)))) , O 3 (\displaystyle ((\ce (O3)))) , NO 2 (\displaystyle (\ce (NO2))), hydrocarbons , HCl (\displaystyle (\ce (HCl))) , HF (\displaystyle (\ce (HF))) , HBr (\displaystyle (\ce (HBr))) , HI (\displaystyle ((\ce (HI)))), couples Hg (\displaystyle (\ce (Hg))) , I 2 (\displaystyle (\ce (I2))) , Br 2 (\displaystyle (\ce (Br2))), as well as many other gases in small quantities. In the troposphere there is constantly a large amount of suspended solid and liquid particles (aerosol). The rarest gas in Earth's atmosphere is Rn (\displaystyle (\ce (Rn))) .

The structure of the atmosphere

boundary layer of the atmosphere

The lower layer of the troposphere (1-2 km thick), in which the state and properties of the Earth's surface directly affect the dynamics of the atmosphere.

Troposphere

Its upper limit is at an altitude of 8-10 km in polar, 10-12 km in temperate and 16-18 km in tropical latitudes; lower in winter than in summer.
The lower, main layer of the atmosphere contains more than 80% of the total mass of atmospheric air and about 90% of all water vapor present in the atmosphere. Turbulence and convection are strongly developed in the troposphere, clouds appear, cyclones and anticyclones develop. Temperature decreases with altitude with an average vertical gradient of 0.65°/100 meters.

tropopause

The transitional layer from the troposphere to the stratosphere, the layer of the atmosphere in which the decrease in temperature with height stops.

Stratosphere

The layer of the atmosphere located at an altitude of 11 to 50 km. A slight change in temperature in the 11-25 km layer (lower layer of the stratosphere) and its increase in the 25-40 km layer from minus 56.5 to plus 0.8 °C (upper stratosphere or inversion region) are typical. Having reached a value of about 273 K (almost 0 °C) at an altitude of about 40 km, the temperature remains constant up to an altitude of about 55 km. This region of constant temperature is called the stratopause and is the boundary between the stratosphere and the mesosphere.

Stratopause

The boundary layer of the atmosphere between the stratosphere and the mesosphere. There is a maximum in the vertical temperature distribution (about 0 °C).

Mesosphere

Thermosphere

The upper limit is about 800 km. The temperature rises to altitudes of 200-300 km, where it reaches values ​​of the order of 1500 K, after which it remains almost constant up to high altitudes. Under the action of solar radiation and cosmic radiation, air is ionized (“polar lights”) - the main regions of the ionosphere lie inside the thermosphere. At altitudes above 300 km, atomic oxygen predominates. The upper limit of the thermosphere is largely determined by the current activity of the Sun. During periods of low activity - for example, in 2008-2009 - there is a noticeable decrease in the size of this layer.

Thermopause

The region of the atmosphere above the thermosphere. In this region, the absorption of solar radiation is insignificant and the temperature does not actually change with height.

Exosphere (scattering sphere)

Up to a height of 100 km, the atmosphere is a homogeneous, well-mixed mixture of gases. In higher layers, the distribution of gases in height depends on their molecular masses, the concentration of heavier gases decreases faster with distance from the Earth's surface. Due to the decrease in gas density, the temperature drops from 0 °C in the stratosphere to minus 110 °C in the mesosphere. However, the kinetic energy of individual particles at altitudes of 200-250 km corresponds to a temperature of ~ 150 °C. Above 200 km, significant fluctuations in temperature and gas density are observed in time and space.

At an altitude of about 2000-3500 km, the exosphere gradually passes into the so-called near space vacuum, which is filled with rare particles of interplanetary gas, mainly hydrogen atoms. But this gas is only part of the interplanetary matter. The other part is composed of dust-like particles of cometary and meteoric origin. In addition to extremely rarefied dust-like particles, electromagnetic and corpuscular radiation of solar and galactic origin penetrates into this space.

Review

The troposphere accounts for about 80% of the mass of the atmosphere, the stratosphere accounts for about 20%; the mass of the mesosphere is no more than 0.3%, the thermosphere is less than 0.05% of the total mass of the atmosphere.

Based on the electrical properties in the atmosphere, they emit the neutrosphere And ionosphere .

Depending on the composition of the gas in the atmosphere, they emit homosphere And heterosphere. heterosphere- this is an area where gravity affects the separation of gases, since their mixing at such a height is negligible. Hence follows the variable composition of the heterosphere. Below it lies a well-mixed, homogeneous part of the atmosphere, called the homosphere. The boundary between these layers is called turbopause, it lies at an altitude of about 120 km.

Other properties of the atmosphere and effects on the human body

Already at an altitude of 5 km above sea level, an untrained person develops oxygen starvation, and without adaptation, a person's performance is significantly reduced. This is where the physiological zone of the atmosphere ends. Human breathing becomes impossible at an altitude of 9 km, although up to about 115 km the atmosphere contains oxygen.

The atmosphere provides us with the oxygen we need to breathe. However, due to the drop in the total pressure of the atmosphere as you rise to a height, the partial pressure of oxygen also decreases accordingly.

History of the formation of the atmosphere

According to the most common theory, the Earth's atmosphere has been in three different compositions throughout its history. Initially, it consisted of light gases (hydrogen and helium) captured from interplanetary space. This so-called primary atmosphere. At the next stage, active volcanic activity led to the saturation of the atmosphere with gases other than hydrogen (carbon dioxide, ammonia, water vapor). This is how secondary atmosphere. This atmosphere was restorative. Further, the process of formation of the atmosphere was determined by the following factors:

  • leakage of light gases (hydrogen and helium) into interplanetary space;
  • chemical reactions occurring in the atmosphere under the influence of ultraviolet radiation, lightning discharges and some other factors.

Gradually, these factors led to the formation tertiary atmosphere, characterized by a much lower content of hydrogen and a much higher content of nitrogen and carbon dioxide (formed as a result of chemical reactions from ammonia and hydrocarbons).

Nitrogen

The formation of a large amount of nitrogen is due to the oxidation of the ammonia-hydrogen atmosphere by molecular oxygen O 2 (\displaystyle (\ce (O2))), which began to come from the surface of the planet as a result of photosynthesis, starting from 3 billion years ago. Also nitrogen N 2 (\displaystyle (\ce (N2))) is released into the atmosphere as a result of the denitrification of nitrates and other nitrogen-containing compounds. Nitrogen is oxidized by ozone to NO (\displaystyle ((\ce (NO)))) in the upper layers of the atmosphere.

Nitrogen N 2 (\displaystyle (\ce (N2))) enters into reactions only under specific conditions (for example, during a lightning discharge). Oxidation of molecular nitrogen by ozone during electrical discharges is used in small quantities in the industrial production of nitrogen fertilizers. It can be oxidized with low energy consumption and converted into a biologically active form by cyanobacteria (blue-green algae) and nodule bacteria that form rhizobial symbiosis with legumes, which can be effective green manure plants that do not deplete, but enrich the soil with natural fertilizers.

Oxygen

The composition of the atmosphere began to change radically with the advent of living organisms on Earth, as a result of photosynthesis, accompanied by the release of oxygen and the absorption of carbon dioxide. Initially, oxygen was spent on the oxidation of reduced compounds - ammonia, hydrocarbons, the ferrous form of iron contained in the oceans and others. At the end of this stage, the oxygen content in the atmosphere began to grow. Gradually, a modern atmosphere with oxidizing properties formed. Since this caused serious and abrupt changes in many processes occurring in the atmosphere, lithosphere and biosphere, this event was called the Oxygen Catastrophe.

noble gases

Air pollution

Recently, man has begun to influence the evolution of the atmosphere. The result of human activity has been a constant increase in the content of carbon dioxide in the atmosphere due to the combustion of hydrocarbon fuels accumulated in previous geological epochs. Enormous quantities are consumed in photosynthesis and absorbed by the world's oceans. This gas enters the atmosphere due to the decomposition of carbonate rocks and organic substances of plant and animal origin, as well as due to volcanism and human production activities. Over the past 100 years content CO 2 (\displaystyle (\ce (CO2))) in the atmosphere increased by 10%, with the main part (360 billion tons) coming from fuel combustion. If the growth rate of fuel combustion continues, then in the next 200-300 years the amount CO 2 (\displaystyle (\ce (CO2))) doubles in the atmosphere and can lead to

The Earth's atmosphere is an air shell.

The presence of a special ball above the earth's surface was proved by the ancient Greeks, who called the atmosphere a steam or gas ball.

This is one of the geospheres of the planet, without which the existence of all life would not be possible.

Where is the atmosphere

The atmosphere surrounds the planets with a dense air layer, starting from earth's surface. It comes into contact with the hydrosphere, covers the lithosphere, going far into outer space.

What is the atmosphere made of?

The air layer of the Earth consists mainly of air, the total mass of which reaches 5.3 * 1018 kilograms. Of these, the diseased part is dry air, and much less water vapor.

Over the sea, the density of the atmosphere is 1.2 kilograms per cubic meter. The temperature in the atmosphere can reach -140.7 degrees, air dissolves in water at zero temperature.

The atmosphere consists of several layers:

  • Troposphere;
  • tropopause;
  • Stratosphere and stratopause;
  • Mesosphere and mesopause;
  • A special line above sea level, which is called the Karman line;
  • Thermosphere and thermopause;
  • Dispersion zone or exosphere.

Each layer has its own characteristics, they are interconnected and ensure the functioning of the air shell of the planet.

The boundaries of the atmosphere

The lowest edge of the atmosphere runs through the hydrosphere and the upper layers of the lithosphere. The upper boundary begins in the exosphere, which is located 700 kilometers from the surface of the planet and will reach 1.3 thousand kilometers.

According to some reports, the atmosphere reaches 10 thousand kilometers. Scientists agreed that the upper boundary of the air layer should be the Karman line, since aeronautics is no longer possible here.

Thanks to constant research in this area, scientists have found that the atmosphere is in contact with the ionosphere at an altitude of 118 kilometers.

Chemical composition

This layer of the Earth consists of gases and gas impurities, which include combustion residues, sea salt, ice, water, dust. The composition and mass of gases that can be found in the atmosphere almost never change, only the concentration of water and carbon dioxide changes.

The composition of water can vary from 0.2 percent to 2.5 percent depending on latitude. Additional elements are chlorine, nitrogen, sulfur, ammonia, carbon, ozone, hydrocarbons, hydrochloric acid, hydrogen fluoride, hydrogen bromide, hydrogen iodide.

A separate part is occupied by mercury, iodine, bromine, nitric oxide. In addition, liquid and solid particles, which are called aerosol, are found in the troposphere. One of the rarest gases on the planet, radon, is found in the atmosphere.

In terms of chemical composition, nitrogen occupies more than 78% of the atmosphere, oxygen - almost 21%, carbon dioxide - 0.03%, argon - almost 1%, the total amount of matter is less than 0.01%. Such a composition of the air was formed when the planet only arose and began to develop.

With the advent of a man who gradually moved to production, chemical composition has changed. In particular, the amount of carbon dioxide is constantly increasing.

Atmosphere functions

The gases in the air layer perform a variety of functions. First, they absorb rays and radiant energy. Secondly, they influence the formation of temperature in the atmosphere and on the Earth. Thirdly, it provides life and its course on Earth.

In addition, this layer provides thermoregulation, which determines the weather and climate, the mode of heat distribution and atmospheric pressure. The troposphere helps regulate the flow of air masses, determine the movement of water, and heat exchange processes.

The atmosphere constantly interacts with the lithosphere, hydrosphere, providing geological processes. The most important function is that there is protection from dust of meteorite origin, from the influence of space and the sun.

Data

  • Oxygen provides on earth decomposition organic matter solid rock, which is very important for emissions, decomposition of rocks, oxidation of organisms.
  • Carbon dioxide contributes to the fact that photosynthesis occurs, and also contributes to the transmission of short waves of solar radiation, the absorption of thermal long waves. If this does not happen, then the so-called greenhouse effect is observed.
  • One of the main problems associated with the atmosphere is pollution, which occurs due to the work of enterprises and vehicle emissions. Therefore, in many countries a special environmental control, and at the international level, special mechanisms are being undertaken to control emissions and the greenhouse effect.
Loading...